Skip to main content

Tier 2 Environmental Impact Assessment tool for dairy and beef cattle.

Project description

🐮 Cattle_lca, a lifecycle assessment tool for livestock systems

license python Code style: black

Based on the GOBLIN (General Overview for a Backcasting approach of Livestock INtensification) LifeCycle Analysis tool, the Cattle_lca module decouples this module making it an independent distribution package.

The package is shipped with key data for emissions factors, concentrate feed inputs, animal features, grassland parameters and upstream emissions.

Currently parameterised for Ireland, but the database can be updated with additional emissions factor contexts, which are selected able with an emissions factor key.

Final results are output as a dictionary object capturing emissions for:

-   enteric_ch4
-   manure_management_N2O
-   manure_management_CH4
-   manure_applied_N
-   N_direct_PRP
-   N_direct_PRP
-   N_indirect_PRP
-   N_direct_fertiliser
-   N_indirect_fertiliser
-   soils_CO2
-   soil_organic_N_direct
-   soil_organic_N_indirect
-   soil_inorganic_N_direct
-   soil_inorganic_N_indirect
-   soil_histosol_N_direct
-   crop_residues_N_direct
-   soil_N_direct
-   soil_N_indirect
-   soils_N2O

Note, that the soil_histosol_N_direct and crop_residues_N_direct category will be 0. Estimation of the soils N2O direct emissions from histosols uses requires the land use data. Emissions can be included using the landcover_lca module and the crop_lca module.

Installation

Install from git hub.

pip install "cattle_lca@git+https://github.com/GOBLIN-Proj/cattle_lca.git@main" 

Install from PyPI.

pip install cattle_lca

Usage

import pandas as pd
from cattle_lca.resource_manager.models import load_livestock_data, load_farm_data
from cattle_lca.lca import ClimateChangeTotals


def main():


    #Create some data to generate results 

    livestock_data = [
        ['ireland', 2018, 2018, 'dairy_cows', 175298, 538, 14.953, 'irish_grass', 'pasture', 'concentrate', 2.992828296, 13.5890411, 10.4109589, 0, 0, 'tank liquid', 'broadcast', 0, 0],
        ['ireland', 2018, 2018, 'suckler_cows', 30587, 600, 1.410958904, 'irish_grass', 'pasture', 'concentrate', 0.842751605, 12.2739726, 11.7260274, 0, 0, 'tank liquid', 'broadcast', 0, 0],
        ['ireland', 2018, 2018, 'DxD_heifers_more_2_yr', 384.1446311, 122.125, 0, 'irish_grass', 'pasture', 'concentrate', 0, 12.98630137, 11.01369863, 0, 0, 'tank liquid', 'broadcast', 0, 0],
        ['ireland', 2018, 2018, 'DxB_heifers_more_2_yr', 0, 94.75, 0, 'irish_grass', 'pasture', 'concentrate', 0, 12.98630137, 11.01369863, 0, 0, 'tank liquid', 'broadcast', 0, 0],
        ['ireland', 2018, 2018, 'BxB_heifers_more_2_yr', 0, 103.875, 0, 'irish_grass', 'pasture', 'concentrate', 0, 12.38356164, 11.61643836, 0, 0, 'tank liquid', 'broadcast', 0, 0],
        ['ireland', 2018, 2018, 'DxD_heifers_less_2_yr', 49298.56099, 395.875, 0, 'irish_grass', 'pasture', 'concentrate', 0, 11.56164384, 12.43835616, 0, 0, 'tank liquid', 'broadcast', 0, 0],
        ['ireland', 2018, 2018, 'DxB_heifers_less_2_yr', 30347.42586, 346.6, 0, 'irish_grass', 'pasture', 'concentrate', 0, 11.56164384, 12.43835616, 0, 0, 'tank liquid', 'broadcast', 0, 0],
        ['ireland', 2018, 2018, 'BxB_heifers_less_2_yr', 14763.98982, 412.3, 0, 'irish_grass', 'pasture', 'concentrate', 0, 11.56164384, 12.43835616, 0, 0, 'tank liquid', 'broadcast', 0, 0],
        ['ireland', 2018, 2018, 'DxD_steers_less_2_yr', 37646.17385, 463.475, 0, 'irish_grass', 'pasture', 'concentrate', 0, 11.56164384, 12.43835616, 0, 0, 'tank liquid', 'broadcast', 0, 0],
        ['ireland', 2018, 2018, 'DxB_steers_less_2_yr', 29323.04018, 474.425, 0, 'irish_grass', 'pasture', 'concentrate', 0, 11.56164384, 12.43835616, 0, 0, 'tank liquid', 'broadcast', 0, 0],
        ['ireland', 2018, 2018, 'BxB_steers_less_2_yr', 14327.92261, 479.9, 0, 'irish_grass', 'pasture', 'concentrate', 0, 11.56164384, 12.43835616, 0, 0, 'tank liquid', 'broadcast', 0, 0],
        ['ireland', 2018, 2018, 'DxD_steers_more_2_yr', 5506.073046, 140.45, 0, 'irish_grass', 'pasture', 'concentrate', 0, 18.73972603, 5.260273973, 0, 0, 'tank liquid', 'broadcast', 0, 0],
        ['ireland', 2018, 2018, 'DxB_steers_more_2_yr', 4225.590942, 129.5, 0, 'irish_grass', 'pasture', 'concentrate', 0, 18.73972603, 5.260273973, 0, 0, 'tank liquid', 'broadcast', 0, 0],
        ['ireland', 2018, 2018, 'BxB_steers_more_2_yr', 2273.779022, 162.35, 0, 'irish_grass', 'pasture', 'concentrate', 0, 18.73972603, 5.260273973, 0, 0, 'tank liquid', 'broadcast', 0, 0],
        ['ireland', 2018, 2018, 'DxD_calves_f', 46993.69321, 149.575, 0, 'irish_grass', 'pasture', 'concentrate', 1, 7.945205479, 16.05479452, 0, 0, 'tank liquid', 'broadcast', 0, 0],
        ['ireland', 2018, 2018, 'DxB_calves_f', 33164.48649, 116.725, 0, 'irish_grass', 'pasture', 'concentrate', 1, 7.945205479, 16.05479452, 0, 0, 'tank liquid', 'broadcast', 0, 0],
        ['ireland', 2018, 2018, 'BxB_calves_f', 13985.29837, 175.125, 0, 'irish_grass', 'pasture', 'concentrate', 1, 7.945205479, 16.05479452, 0, 0, 'tank liquid', 'broadcast', 0, 0],
        ['ireland', 2018, 2018, 'DxD_calves_m', 32140.1008, 122.2, 0, 'irish_grass', 'pasture', 'concentrate', 1, 7.945205479, 16.05479452, 0, 0, 'tank liquid', 'broadcast', 0, 0],
        ['ireland', 2018, 2018, 'DxB_calves_m', 31755.95617, 118.55, 0, 'irish_grass', 'pasture', 'concentrate', 1, 7.945205479, 16.05479452, 0, 0, 'tank liquid', 'broadcast', 0, 0],
        ['ireland', 2018, 2018, 'BxB_calves_m', 13424.64053, 178.775, 0, 'irish_grass', 'pasture', 'concentrate', 1, 7.945205479, 16.05479452, 0, 0, 'tank liquid', 'broadcast', 0, 0],
        ['ireland', 2018, 2018, 'bulls', 4641.388771, 773, 0, 'irish_grass', 'pasture', 'concentrate', 0.654140961, 11.56164384, 12.43835616, 0, 0, 'tank liquid', 'broadcast', 0, 0]
        ]


    columns = ['ef_country', 'farm_id', 'year', 'cohort', 'pop', 'weight', 'daily_milk', 'forage', 'grazing',
                'con_type', 'con_amount', 't_outdoors', 't_indoors', 'wool', 't_stabled', 'mm_storage',
                'daily_spreading', 'n_sold', 'n_bought']

    livestock_data_frame = pd.DataFrame(livestock_data, columns=columns)

    farm_data = {
        'ef_country': ['ireland'],
        'farm_id': [2018],
        'year': [2018],
        'total_urea_kg': [2072487.127],
        'total_lime_kg': [2072487.127],
        'an_n_fert': [2072487.127],
        'urea_n_fert': [2072487],
        'total_urea_abated': [17310655.18],
        'total_p_fert': [1615261.859],
        'total_k_fert': [3922778.8],
        'diesel_kg': [0],
        'elec_kwh': [0]
    }

    farm_dataframe = pd.DataFrame(farm_data)

    # Instantiate ClimateChange Totals Class, passing Ireland as the emissions factor country
    climatechange = ClimateChangeTotals("ireland")

    #Create a dictionary to store results 
    index = -1
    emissions_dict = climatechange.create_emissions_dictionary([index])
    
    #load the dataframes 
    animals = load_livestock_data(livestock_data_frame)
    farms = load_farm_data(farm_dataframe)


    animals_loc = list(animals.keys())[0]
    farm_loc = list(farms.keys())[0]

    #generate results and store them in the dictionary

    emissions_dict["enteric_ch4"][index] += (
        climatechange.CH4_enteric_ch4(
            animals[animals_loc]["animals"]
        )
    )
    emissions_dict["manure_management_N2O"][index] += (
        climatechange.Total_storage_N2O(
            animals[animals_loc]["animals"]
        )
    )
    emissions_dict["manure_management_CH4"][index] += (
        climatechange.CH4_manure_management(
            animals[animals_loc]["animals"]
        )
        
    )
    emissions_dict["manure_applied_N"][index] += (
        climatechange.Total_N2O_Spreading(
            animals[animals_loc]["animals"]
        )
        
    )
    emissions_dict["N_direct_PRP"][index] += (
        climatechange.N2O_total_PRP_N2O_direct(
            animals[animals_loc]["animals"]
        )
        
    )

    emissions_dict["N_indirect_PRP"][index] += (
        climatechange.N2O_total_PRP_N2O_indirect(
            animals[animals_loc]["animals"]
        )
        
    )
    emissions_dict["N_direct_fertiliser"][index] = (
        climatechange.N2O_direct_fertiliser(
            farms[farm_loc].urea_n_fert,
            farms[farm_loc].total_urea_abated,
            farms[farm_loc].an_n_fert
        )
        
    )

    emissions_dict["N_indirect_fertiliser"][index] += (
        climatechange.N2O_fertiliser_indirect(
            farms[farm_loc].urea_n_fert,
            farms[farm_loc].total_urea_abated,
            farms[farm_loc].an_n_fert,
        )
        
    )
    emissions_dict["soils_CO2"][index] += (
        climatechange.CO2_soils_GWP(
            farms[farm_loc].total_urea_kg,
            farms[farm_loc].total_lime_kg,
        )
        
    )


    # Add the totals 
    emissions_dict["soil_organic_N_direct"][index] = (
        emissions_dict["manure_applied_N"][index]
        + emissions_dict["N_direct_PRP"][index]
    )
    emissions_dict["soil_organic_N_indirect"][index] = emissions_dict[
        "N_indirect_PRP"
    ][index]

    emissions_dict["soil_inorganic_N_direct"][index] = emissions_dict[
        "N_direct_fertiliser"
    ][index]
    emissions_dict["soil_inorganic_N_indirect"][
        index
    ] = emissions_dict["N_indirect_fertiliser"][index]

    emissions_dict["soil_N_direct"][index] = (
        emissions_dict["soil_organic_N_direct"][index]
        + emissions_dict["soil_inorganic_N_direct"][index]
    )

    emissions_dict["soil_N_indirect"][index] = (
        emissions_dict["soil_inorganic_N_indirect"][index]
        + emissions_dict["soil_organic_N_indirect"][index]
    )

    emissions_dict["soils_N2O"][index] = (
        emissions_dict["soil_N_direct"][index]
        + emissions_dict["soil_N_indirect"][index]
    )

    #Print the emission results dictionary
    print(emissions_dict)


if __name__ == "__main__":
    main()

License

This project is licensed under the terms of the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cattle_lca-0.3.1.tar.gz (47.5 kB view details)

Uploaded Source

Built Distribution

cattle_lca-0.3.1-py3-none-any.whl (47.8 kB view details)

Uploaded Python 3

File details

Details for the file cattle_lca-0.3.1.tar.gz.

File metadata

  • Download URL: cattle_lca-0.3.1.tar.gz
  • Upload date:
  • Size: 47.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.10.0 Linux/5.15.0-105-generic

File hashes

Hashes for cattle_lca-0.3.1.tar.gz
Algorithm Hash digest
SHA256 ff039f89d481d802252a00499112ad44540b562833ff6671350443a7e0f2a7ce
MD5 1211d844b35eec339f0aebcd45212494
BLAKE2b-256 ca69ea2fd2d23b77dbed1d7624ddd54664696a4533a517e05b37ccf621164eda

See more details on using hashes here.

File details

Details for the file cattle_lca-0.3.1-py3-none-any.whl.

File metadata

  • Download URL: cattle_lca-0.3.1-py3-none-any.whl
  • Upload date:
  • Size: 47.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.10.0 Linux/5.15.0-105-generic

File hashes

Hashes for cattle_lca-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 46999c81f8dae8f3d26d89167080243cf3fbd9d50f669acbe0a395009ba1cea1
MD5 b558467e68c7731bac3550f2748a05b8
BLAKE2b-256 c578826a4187b9a8bc8610b32c922ffedbffa50089492a90b3bdd60816222f71

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page