Python Package for causal inference using Bayesian structural time-series models
Project description
CausalImpact
TO DO
- Estimation is MLE not Bayesian
A Python package for causal inference using Bayesian structural time-series models
This is a port of the R package CausalImpact, see: https://github.com/google/CausalImpact.
This package implements an approach to estimating the causal effect of a designed intervention on a time series. For example, how many additional daily clicks were generated by an advertising campaign? Answering a question like this can be difficult when a randomized experiment is not available. The package aims to address this difficulty using a structural Bayesian time-series model to estimate how the response metric might have evolved after the intervention if the intervention had not occurred.
As with all approaches to causal inference on non-experimental data, valid conclusions require strong assumptions. The CausalImpact package, in particular, assumes that the outcome time series can be explained in terms of a set of control time series that were themselves not affected by the intervention. Furthermore, the relation between treated series and control series is assumed to be stable during the post-intervention period. Understanding and checking these assumptions for any given application is critical for obtaining valid conclusions.
Try it out in the browser
https://mybinder.org/v2/gh/jamalsenouci/causalimpact/HEAD?filepath=GettingStarted.ipynb
Installation
install the latest release via pip
pip install causalimpact
Getting started
Further resources
Bugs
The issue tracker is at https://github.com/jamalsenouci/causalimpact/issues. Please report any bugs that you find. Or, even better, fork the repository on GitHub and create a pull request.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for causalimpact-0.2.1-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 17042c8e8cd8ab0a6b39b7e6124739896b5836c692941640f183e2f00465eb34 |
|
MD5 | 325fead4454bf56831fcc4a796729d42 |
|
BLAKE2b-256 | 28895ba3e8d43d8b56d6e23a046457c588b13ae30e6596bb3d64226bdfa90db1 |