hierarchical data generation for causal discovery and abstraction
Project description
ProblemSetApproximateCausalDiscovery
from causalspyne import gen_partially_observed
gen_partially_observed(size_micro_node_dag=4,
num_macro_nodes=4,
degree=2, # average vertex/node degree
list_confounder2hide=[0.5, 0.9], # choie of confounder to hide: percentile or index of all toplogically sorted confounders
num_sample=200)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
causalspyne-0.1.0.tar.gz
(11.1 kB
view details)
Built Distribution
File details
Details for the file causalspyne-0.1.0.tar.gz
.
File metadata
- Download URL: causalspyne-0.1.0.tar.gz
- Upload date:
- Size: 11.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.2.0 CPython/3.9.12 Linux/5.15.0-117-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2bb61bb12b8bd591fed9394334569b6e3c5ab9922e1316fbfce1d4bfa3f3b6e2 |
|
MD5 | d066ffcbd49ac8af7a89e9fb4f52a6aa |
|
BLAKE2b-256 | 8baca0c85f8e0f2f9c567d2a2b34bd8ad8f05bed7db45776407af94898afc41b |
File details
Details for the file causalspyne-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: causalspyne-0.1.0-py3-none-any.whl
- Upload date:
- Size: 15.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.2.0 CPython/3.9.12 Linux/5.15.0-117-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ee73267c79de65124564cf73ce13e28bda4a414be739ee55687b0f7a6079de0c |
|
MD5 | 506de8bf2da769284041ebc707894abe |
|
BLAKE2b-256 | e35927e90ca8e3ff55ab78565ed6cd84a63455cf7a11f328cf8eabf38fe9a6ef |