Multi-label Text Classification Toolkit
Project description
# Caver: a toolkit for multilabel text classification.
Rising a torch in the cave to see the words on the wall. This is the `Caver`.
## Tutorial
[Documents](https://guokr.github.io/Caver)
### Train model
```python
from caver import Trainer
t = Trainer(
'CNN',
'data_path',
...... # kwargs will update the default value in config
)
t.train()
```
### Classify
```python
from caver import Caver
cnn = Caver('CNN', 'CNN_model.pth', 'data_path')
# predict
cnn.predict('Across the Great Wall, we can reach every corner in the world')
# get top label
cnn.get_top_label('The quick brown fox jumps over the lazy dog')
# ensemble
from caver import Ensemble
swen = Caver('SWEN', 'SWEN_model.pth', 'data_path')
model = Ensemble([cnn, swen])
model.predict('The quick brown fox jumps over the lazy dog', 'log')
model.get_top_label('The quick brown fox jumps over the lazy dog', 'avg')
```
## TODO
* [x] BaseModule
* [x] Data
* [x] classify
* [x] ensemble: voting
* [x] config
* [x] model save and load
* [x] models: CNN, LSTM, SWEN, HAN
* [x] dropout
* [ ] fastText support
* [ ] docker
Rising a torch in the cave to see the words on the wall. This is the `Caver`.
## Tutorial
[Documents](https://guokr.github.io/Caver)
### Train model
```python
from caver import Trainer
t = Trainer(
'CNN',
'data_path',
...... # kwargs will update the default value in config
)
t.train()
```
### Classify
```python
from caver import Caver
cnn = Caver('CNN', 'CNN_model.pth', 'data_path')
# predict
cnn.predict('Across the Great Wall, we can reach every corner in the world')
# get top label
cnn.get_top_label('The quick brown fox jumps over the lazy dog')
# ensemble
from caver import Ensemble
swen = Caver('SWEN', 'SWEN_model.pth', 'data_path')
model = Ensemble([cnn, swen])
model.predict('The quick brown fox jumps over the lazy dog', 'log')
model.get_top_label('The quick brown fox jumps over the lazy dog', 'avg')
```
## TODO
* [x] BaseModule
* [x] Data
* [x] classify
* [x] ensemble: voting
* [x] config
* [x] model save and load
* [x] models: CNN, LSTM, SWEN, HAN
* [x] dropout
* [ ] fastText support
* [ ] docker
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
caver-0.0.4.tar.gz
(11.0 kB
view hashes)
Built Distribution
caver-0.0.4-py3.6.egg
(37.5 kB
view hashes)