Skip to main content

Python package for stochastic simulations

Project description

Logo for cayenne

cayenne : Python package for stochastic simulations

Travis Build Status Azure Build Status codecov Updates Documentation Status pypi License Code style: black Gitter chat

Introduction

cayenne is a Python package for stochastic simulations. It offers a simple API to define models, perform stochastic simulations with them and visualize the results in a convenient manner.

Currently under active development in the develop branch.

Install

Install with pip:

$ pip install cayenne

Documentation

Usage

A short summary follows, but a more detailed tutorial can be found here. You can define a model as a Python string (or a text file, see docs). The format of this string is loosely based on the excellent antimony library, which is used behind the scenes by cayenne.

from cayenne.simulation import Simulation
model_str = """
        const compartment comp1;
        comp1 = 1.0; # volume of compartment

        r1: A => B; k1;
        r2: B => C; k2;

        k1 = 0.11;
        k2 = 0.1;
        chem_flag = false;

        A = 100;
        B = 0;
        C = 0;
    """
sim = Simulation.load_model(model_str, "ModelString")
# Run the simulation
sim.simulate(max_t=40, max_iter=1000, n_rep=10)
sim.plot()

Plot of species A, B and C

Change simulation algorithm

You can change the algorithm used to perform the simulation by changing the algorithm parameter (one of "direct", "tau_leaping" or "tau_adaptive")

sim.simulate(max_t=150, max_iter=1000, n_rep=10, algorithm="tau_leaping")

Our benchmarks are summarized below, and show direct to be a good starting point. tau_leaping offers greater speed but needs specification and tuning of the tau hyperparameter. The tau_adaptive is less accurate and a work in progress.

Run simulations in parallel

You can run the simulations on multiple cores by specifying the n_procs parameter

sim.simulate(max_t=150, max_iter=1000, n_rep=10, n_procs=4)

Accessing simulation results

You can access all the results or the results for a specific list of species

# Get all the results
results = sim.results
# Get results only for one or more species
results.get_species(["A", "C"])

You can also access the final states of all the simulation runs by

# Get results at the simulation endpoints
final_times, final_states = results.final

Additionally, you can access the state a particular time point of interest $t$. cayenne will interpolate the value from nearby time points to give an accurate estimate.

# Get results at timepoint "t"
t = 10.0
states = results.get_state(t) # returns a list of numpy arrays

Benchmarks

direct tau_leaping tau_adaptive
cayenne :heavy_check_mark: Most accurate yet :heavy_check_mark: Very fast but may need manual tuning Less accurate than GillespieSSA's version
Tellurium :exclamation: Inaccurate for 2nd order N/A N/A
GillespieSSA Very slow :exclamation: Inaccurate for initial zero counts :exclamation: Inaccurate for initial zero counts
BioSimulator.jl :exclamation: Inaccurate interpolation :exclamation: Inaccurate for initial zero counts :exclamation: Inaccurate for initial zero counts

License

Copyright (c) 2018-2020, Dileep Kishore, Srikiran Chandrasekaran. Released under: Apache Software License 2.0

Credits

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cayenne-1.0.3.tar.gz (1.1 MB view details)

Uploaded Source

File details

Details for the file cayenne-1.0.3.tar.gz.

File metadata

  • Download URL: cayenne-1.0.3.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.6.10

File hashes

Hashes for cayenne-1.0.3.tar.gz
Algorithm Hash digest
SHA256 897f2c6387f8ff09ae26a11128b8939e6350ff7f8794fbdf7f58015d1a176280
MD5 e10bb05612e304b926a05af4b1cb74d4
BLAKE2b-256 22538fdf90083da0f74c38287e380b5e2f17ed923259baf4d572de180848b5ed

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page