Skip to main content

Platon: identification and characterization of bacterial plasmid contigs from short-read draft assemblies.

Project description

DOI:10.1099/mgen.0.000398 License: GPL v3 PyPI - Python Version GitHub release PyPI PyPI - Status Conda

Platon: identification and characterization of bacterial plasmid contigs from short-read draft assemblies.



TL;DR Platon detects plasmid contigs within bacterial draft genomes from WGS short-read assemblies. Therefore, Platon analyzes the natural distribution biases of certain protein coding genes between chromosomes and plasmids. This analysis is complemented by comprehensive contig characterizations upon which several heuristics are applied.

Platon conducts three analysis steps:

  1. It predicts and searches coding sequences against a custom and pre-computed database comprising marker protein sequences (MPS) and related replicon distribution scores (RDS). These scores express the empirically measured frequency biases of protein sequence distributions between plasmids and chromosomes pre-computed on complete NCBI RefSeq replicons. Platon calculates the mean RDS for each contig and either classifies them as chromosome if the RDS is below a sensitivity cutoff determined to 95% sensitivity or as plasmid if the RDS is above a specificity cutoff determined to 99.9% specificity. Exact values for these thresholds have been computed based on Monte Carlo simulations of artifical replicon fragments created from complete RefSeq chromosome and plasmid sequences.
  2. Contigs passing the sensitivity filter get comprehensivley characterized. Hereby, Platon tries to circularize the contig sequences, searches for rRNA, replication, mobilization and conjugation genes, oriT sequences, incompatibility group DNA probes and finally performs a BLAST+ search against the NCBI plasmid database.
  3. Finally, to increase the overall sensitivity, Platon classifies all remaining contigs based on the gathered information by several heuristics.
Replicon distribution and alignment hit frequencies of MPS
Fig: Replicon distribution and alignment hit frequencies of MPS. Shown are summed plasmid and chromosome alignment hit frequencies per MPS plotted against plasmid/chromosome hit count ratios scaled to [-1 (chromosome), 1 (plasmid)]; Hue: normalized RDS values (min=-100, max=100), hit count outliers below 10-4 and above 1 are discarded for the sake of readability.



Platon accepts draft assemblies in fasta format. If contigs have been assembled with SPAdes, Platon is able to extract the coverage information from the contig names.


For each contig classified as plasmid sequence the following columns are printed to STDOUT as tab separated values:

  • Contig ID
  • Length
  • Coverage
  • # ORFs
  • RDS
  • Circularity
  • Incompatibility Type(s)
  • # Replication Genes
  • # Mobilization Genes
  • # OriT Sequences
  • # Conjugation Genes
  • # rRNA Genes
  • # Plasmid Database Hits

In addition, Platon writes the following files into the output directory:

  • <prefix>.plasmid.fasta: contigs classified as plasmids or plasmodal origin
  • <prefix>.chromosome.fasta: contigs classified as chromosomal origin
  • <prefix>.tsv: dense information as printed to STDOUT (see above)
  • <prefix>.json: comprehensive results and information on each single plasmid contig. All files are prefixed (<prefix>) as the input genome fasta file.


Platon can be installed via BioConda and Pip. However, we encourage to use Conda to automatically install all required 3rd party dependencies. In all cases a mandatory database must be downloaded.


$ conda install -c conda-forge -c bioconda -c defaults platon


$ python3 -m pip install --user platon

Platon requires the following 3rd party executables which must be installed & executable:

Database download

Platon requires a mandatory database which is publicly hosted at Zenodo: DOI Further information is provided in the database section below.

$ wget
$ tar -xzf db.tar.gz
$ rm db.tar.gz

The db path can either be provided via parameter (--db) or environment variable (PLATON_DB):

$ platon --db <db-path> genome.fasta

$ export PLATON_DB=<db-path>
$ platon genome.fasta

Additionally, for a system-wide setup, the database can be copied to the Platon base directory:

$ cp -r db/ <platon-installation-dir>



usage: platon [-h] [--db DB] [--mode {sensitivity,accuracy,specificity}]
              [--characterize] [--output OUTPUT] [--prefix PREFIX]
              [--threads THREADS] [--verbose] [--version]

Identification and characterization of bacterial plasmid contigs from short-read draft assemblies.

positional arguments:
  <genome>              draft genome in fasta format

optional arguments:
  -h, --help            show this help message and exit
  --db DB, -d DB        database path (default = <platon_path>/db)
  --mode {sensitivity,accuracy,specificity}, -m {sensitivity,accuracy,specificity}
                        applied filter mode: sensitivity: RDS only (>= 95%
                        sensitivity); specificity: RDS only (>=99.9%
                        specificity); accuracy: RDS & characterization
                        heuristics (highest accuracy) (default = accuracy)
  --characterize, -c    deactivate filters; characterize all contigs
  --output OUTPUT, -o OUTPUT
                        output directory (default = current working directory)
  --prefix PREFIX, -p PREFIX
                        file prefix (default = input file name)
  --threads THREADS, -t THREADS
                        number of threads to use (default = number of
                        available CPUs)
  --verbose, -v         print verbose information
  --version, -V         show program's version number and exit



$ platon genome.fasta

Expert: writing results to results directory with verbose output using 8 threads:

$ platon -db ~/db --output results/ --verbose --threads 8 genome.fasta


Platon provides 3 different modi controlling which filters will be used. Accuracy mode is the preset default.


In the sensitivity mode Platon will classifiy all contigs with an RDS value below the sensitivity threshold as chromosomal and all remaining contigs as plasmid. This threshold was defined to account for 95% sensitivity and computed via Monte Carlo simulations of artifical contigs resulting in an RDS=-7.9. -> use this mode to exclude chromosomal contigs.


In the specificity mode Platon will classifiy all contigs with an RDS value above the specificity threshold as plasmid and all remaining contigs as chromosomal. This threshold was defined to account for 99.9% specificity and computed via Monte Carlo simulations of artifical contigs resulting in an RDS=0.7.

Accuracy (default)

In the accuracy mode Platon will classifiy all contigs with:

  • an RDS value below the sensitivity threshold as chromosomal
  • an RDS value above the specificity threshold as plasmid and in addition all contigs as plasmid for which one of the following is true: it
  • can be circularized
  • has an incompatibility group sequence
  • has a replication or mobilization HMM hit
  • has an oriT hit
  • has an RDS above the conservative score (0.1), a RefSeq plasmid hit and no rRNA hit


Platon depends on a custom database based on MPS, RDS, RefSeq Plasmid database, PlasmidFinder db as well as manually curated MOB HMM models from MOBscan, custom conjugation and replication HMM models and oriT sequences from MOB-suite. This database based on UniProt UniRef90 release 202 can be downloaded here: (zipped 1.6 Gb, unzipped 2.8 Gb) DOI

Please make sure that you use the latest Platon version along with the most recent database version! Older software versions are not compatible with the latest database version


Platon was developed and tested in Python 3.5 and depends on BioPython (>=1.71).

Additionally, it depends on the following 3rd party executables:


Schwengers O., Barth P., Falgenhauer L., Hain T., Chakraborty T., & Goesmann A. (2020). Platon: identification and characterization of bacterial plasmid contigs in short-read draft assemblies exploiting protein sequence-based replicon distribution scores. Microbial Genomics, 95, 295.

As Platon takes advantage of the inc groups, MOB HMMs and oriT sequences of the following databases, please also cite:

  • Carattoli A., Zankari E., Garcia-Fernandez A., Voldby Larsen M., Lund O., Villa L., Aarestrup F.M., Hasman H. (2014) PlasmidFinder and pMLST: in silico detection and typing of plasmids. Antimicrobial Agents and Chemotherapy,

  • Garcillán-Barcia M. P., Redondo-Salvo S., Vielva L., de la Cruz F. (2020) MOBscan: Automated Annotation of MOB Relaxases. Methods in Molecular Biology,

  • Robertson J., Nash J. H. E. (2018) MOB-suite: Software Tools for Clustering, Reconstruction and Typing of Plasmids From Draft Assemblies. Microbial Genomics,


If you run into any issues with Platon, we'd be happy to hear about it! Please, start the pipeline with -v (verbose) and do not hesitate to file an issue including as much of the following as possible:

  • a detailed description of the issue
  • the platon cmd line output
  • the <prefix>.json file if possible
  • A reproducible example of the issue with a small dataset that you can share (helps us identify whether the issue is specific to a particular computer, operating system, and/or dataset).

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cb-platon-1.6.tar.gz (20.4 kB view hashes)

Uploaded source

Built Distribution

cb_platon-1.6-py3-none-any.whl (31.9 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page