Skip to main content
Python Software Foundation 20th Year Anniversary Fundraiser  Donate today!

Library for implementing Content-Based Recommendation System

Project description


cbrecommender is a Python library for implementing a Content-Based Recommendation Engine.


Use the package manager pip to install cbrecommender.

pip install cbrecommender


# Import the class 'cbr' for Content-Based Recommender.
from cbrecommender import cbr

# Create the object.
r = cbr()

# OneHotEncode the features
* features(pandas.DataFrame) can be anything that signifies the user's preferences.
* For example, movie genres, news topics, post tags etc.
* Returns a OneHotEncoded dataframe from the features's comma (,) separated values.

# Extract user's preferences and build the 'User-Profile'., scores)
* features(pandas.DataFrame) must be OneHotEncoded and is that of the items of user's choice.
* scores(list) denote the user's preference to the corresponding items.
* For example, it can be rating for a movie, song etc. 
* Returns the 'User-Profile', which is the model.
# Recommend items based on User-Profile.
r.recommend(items, features, [score, num])
* items(pandas.DataFrame) which denote those items that the user haven't chosen.
* features(pandas.DataFrame) is that of the items.
* score(float) is a non-mandatory parameter that specifies the threshold score for recommending items.
* num(int) is also a non-mandatory parameter that denotes the number of items to be recommended.
* Returns items along with their expected_score as a pandas.DataFrame object.


from cbrecommender import cbr
import pandas
df = pandas.DataFrame(
{'movie':['Endgame','Avatar','Titanic','Infinity War','Jurassic World','Black Panther',
          'Harry Potter-II','The Last Jedi'],
movie genre
Endgame Action,Adventure,Drama
Avatar Action,Adventure,Fantasy
Titanic Drama,Romance
Infinity War Action,Adventure,Sci-Fi
Jurassic World Action,Adventure,Sci-Fi
Black Panther Action,Adventure,Sci-Fi
Harry Potter-II Adventure,Drama,Fantasy
The Last Jedi Action,Adventure,Fantasy
r = cbr()
gen = r.encode_features(df.genre)
action adventure drama fantasy romance sci-fi
1 1 1 0 0 0
1 1 0 1 0 0
0 0 1 0 1 0
1 1 0 0 0 1
1 1 0 0 0 1
1 1 0 0 0 1
0 1 1 1 0 0
1 1 0 1 0 0
rating = [8.5,7.8,7.8,8.5]
model =[:4, :], rating)
action adventure drama fantasy romance sci-fi
0.2755 0.2755 0.1811 0.0866 0.0866 0.0944
recommendations = r.recommend(df[['movie']].iloc[4:,:], gen.iloc[4:,:])
item expected score
Jurassic World 6.45
Black Panther 6.45
Harry Potter-II 6.37
The Last Jedi 5.43


Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.


MIT License

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for cbrecommender, version 0.0.2
Filename, size File type Python version Upload date Hashes
Filename, size cbrecommender-0.0.2.tar.gz (3.5 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring DigiCert DigiCert EV certificate Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page