Case Based Reasoning library for Python
Project description
Case Based Reasoning the Pythonic Way
Case Based Reasoning library for Python
This library provides the possibility to integrate with native python. Basic implemetation can use instances of Python classes to calculate similarity between those objects.
You can find a sparse description of case base reasoning at the english wikipedia page. Please also take a look at the examples.
import dataclasses
import functools
from typing import Optional
from cbrlib import (
Evaluator,
FunctionCalculationParameter,
NumericEvaluationOptions,
ReasoningRequest,
WeightedPropertyEvaluatorMapping,
)
from cbrlib import casebase, evaluate
@dataclasses.dataclass(slots=True, frozen=True)
class DataObject:
color: Optional[str] = None
shape: Optional[str] = None
size: Optional[int] = None
color_lookup = {
"red": {"red": 1, "orange": 0.8, "yellow": 0.4},
"orange": {"orange": 1, "red": 0.8, "yellow": 0.8},
}
color_evaluator = functools.partial(evaluate.table_lookup, color_lookup)
def create_size_evaluator() -> Evaluator:
options = NumericEvaluationOptions(
min_=0,
max_=100,
if_less=FunctionCalculationParameter(tolerance=1.0),
if_more=FunctionCalculationParameter(tolerance=1.0),
)
return functools.partial(evaluate.numeric, options)
def dataobject_evaluator() -> Evaluator:
mappings = (
WeightedPropertyEvaluatorMapping("color", color_evaluator, 2),
WeightedPropertyEvaluatorMapping("size", create_size_evaluator(), 1),
WeightedPropertyEvaluatorMapping("shape", evaluate.equality, 1),
)
return functools.partial(evaluate.case_average, mappings)
def main() -> None:
data = [
DataObject(color="red", shape="triangle", size=20),
DataObject(color="orange", shape="circle", size=70),
DataObject(color="green", shape="square", size=50),
]
print("-" * 80)
print(
casebase.infer(
data,
ReasoningRequest(
query=DataObject(color="red"),
),
dataobject_evaluator(),
)
)
print("-" * 80)
print(
casebase.infer(
data,
ReasoningRequest(
query=DataObject(size=50),
),
dataobject_evaluator(),
)
)
A big thanky you to myCBR for the example data.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
cbrlib-2.0.10.tar.gz
(9.2 kB
view details)
Built Distribution
cbrlib-2.0.10-py3-none-any.whl
(10.0 kB
view details)
File details
Details for the file cbrlib-2.0.10.tar.gz
.
File metadata
- Download URL: cbrlib-2.0.10.tar.gz
- Upload date:
- Size: 9.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.2 CPython/3.10.13 Linux/6.8.1-arch1-1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b671ef52d887e1321288a718e8ac08dffca6c2cfb3ab467880252326279469ea |
|
MD5 | 12eefe70e954cdfadca8a5123bd5e0df |
|
BLAKE2b-256 | cc32d00baf275a6fdd4a95ec30d21a41b13ba2251dee0b8bc8686a3641d4735b |
File details
Details for the file cbrlib-2.0.10-py3-none-any.whl
.
File metadata
- Download URL: cbrlib-2.0.10-py3-none-any.whl
- Upload date:
- Size: 10.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.2 CPython/3.10.13 Linux/6.8.1-arch1-1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 46e74900aef5ebe3c11d0beacd4209176b034428c6cec212bd749d5c3bc38857 |
|
MD5 | c95fe38c976ea8299172f89f9f1839df |
|
BLAKE2b-256 | 68f3b70b418748504d45df4a0ede630319b044a6249984c1e0e819bdc9c62c99 |