No project description provided
Project description
Coral (c-core)
Docker image build
Building your own docker image is optional. You can use the pre-built image from docker hub.
docker build . -t coral -f dockerfile/Dockerfile
Running from built docker image
docker run --rm -v ".\data:/data" coral -u "/data/For_Curtain_Raw_PPM1H- PROTAC_TP.txt" -a "/data/annotation.txt"-o "/data/output.txt" -c "/data/comparison.txt" -x "T: Index,T: Gene"
Running from docker hub image
docker run --rm -v ".\data:/data" noatgnu/coral:0.0.1 -u "/data/For_Curtain_Raw_PPM1H- PROTAC_TP.txt" -a "/data/annotation.txt"-o "/data/output.txt" -c "/data/comparison.txt" -x "T: Index,T: Gene"
Pip install
Install R and set R_HOME
environment variable to the R installation directory as well as install the QFeatures package and its dependencies.
pip install ccore-coral
Running from pip install
coral -u "/data/For_Curtain_Raw_PPM1H- PROTAC_TP.txt" -a "/data/annotation.txt"-o "/data/output.txt" -c "/data/comparison.txt" -x "T: Index,T: Gene"
CLI Usage
usage: coral [-h] [-u unprocessed] [-a annotation] [-o output] [-c comparison] [-x index] [-f column_na_filter_threshold] [-r row_na_filter_threshold] [-i imputation_method] [-n normalization_method] [-g aggregation_method] [-t aggregation_column]
-u unprocessed, --unprocessed unprocessed
Filepath to the unprocessed data file.
-a annotation, --annotation annotation
Filepath to the annotation file.
-o output, --output output
Filepath to the output file.
-c comparison, --comparison comparison
Filepath to the comparison file.
-x index, --index index
Column names to be used as index.
-f column_na_filter_threshold, --column_na_filter_threshold column_na_filter_threshold
Threshold for column-wise NA filtering.
-r row_na_filter_threshold, --row_na_filter_threshold row_na_filter_threshold
Threshold for row-wise NA filtering.
-i imputation_method, --imputation_method imputation_method
Method for imputation.
-n normalization_method, --normalization_method normalization_method
Method for normalization.
-g aggregation_method, --aggregation_method aggregation_method
Method for aggregation.
-t aggregation_column, --aggregation_column aggregation_column
Column name to be used for aggregation.
Usage as a module
import pandas as pd
from coral.data import Coral
core = Coral()
# Read in the unprocessed data
core.load_unproccessed_file("data/For_Curtain_Raw_PPM1H- PROTAC_TP.txt")
# Add sample column names
core.add_sample("...")
# Add condition or group names
core.add_condition("...")
# Add sample group mapping
core.add_condition_map("condition_name", "sample_name")
# Add comparison
core.add_comparison("condition_A", "condition_B", "comparison_name")
# Add index columns
core.index_columns = ["index_column_name"]
# Filter column by NA
core.filter_missing_columns(0.7)
# Create QFeatures object
core.prepare()
# Filter row by NA
core.filter_missing_rows(0.7)
# Impute missing values
core.impute("knn")
# log2 transform
core.log_transform()
# aggregate features
core.aggregate_features("new_feature_column")
# normalize
core.normalize()
# Prepare limma matrix
core.prepare_for_limma()
# Run limma
results = []
for d in core.run_limma():
results.append(d)
if len(results) > 1:
# Merge limma results
results = pd.concat(results)
else:
results = results[0]
# Write results
results.to_csv("output.txt", sep="\t", index=False)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
ccore_coral-0.1.2.tar.gz
(5.9 kB
view details)
Built Distribution
File details
Details for the file ccore_coral-0.1.2.tar.gz
.
File metadata
- Download URL: ccore_coral-0.1.2.tar.gz
- Upload date:
- Size: 5.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.10.11 Windows/10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b05f284b731f0a932e1a6f92a8c1bdc5d74220dbdc210e183e37aa5e2b34a10f |
|
MD5 | 50f5f6406b2080823626f2af9e2c077e |
|
BLAKE2b-256 | 3777d89783e22a0425907634064917a117539bbf048e540eccc6b0bffa079a6e |
File details
Details for the file ccore_coral-0.1.2-py3-none-any.whl
.
File metadata
- Download URL: ccore_coral-0.1.2-py3-none-any.whl
- Upload date:
- Size: 6.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.10.11 Windows/10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9054a365948efedd255fe090bcba7c0e2df37d02dc9c8a4d2977232a800433b0 |
|
MD5 | da36b3257744cf895223dae9b20b8563 |
|
BLAKE2b-256 | a3a84218c404a1def328727de64d2d2e78b1f9bcb87bb7256d5256e28efa3e03 |