Skip to main content

an inference framework for image/video restoration with VapourSynth support

Project description

ccrestoration

codecov CI-test Release-pypi PyPI version GitHub

an inference framework for image/video restoration with VapourSynth support, compatible with many community models

Install

Make sure you have Python >= 3.9 and PyTorch >= 1.13 installed

pip install ccrestoration
  • Install VapourSynth (optional)

Start

cv2

A simple example to use the sisr model (APISR) to process an image

import cv2
import numpy as np

from ccrestoration import AutoModel, ConfigType, SRBaseModel

model: SRBaseModel = AutoModel.from_pretrained(ConfigType.RealESRGAN_APISR_RRDB_GAN_generator_2x)

img = cv2.imdecode(np.fromfile("test.jpg", dtype=np.uint8), cv2.IMREAD_COLOR)
img = model.inference_image(img)
cv2.imwrite("test_out.jpg", img)

VapourSynth

A simple example to use the vsr model (AnimeSR) to process a video

import vapoursynth as vs
from vapoursynth import core

from ccrestoration import AutoModel, BaseModelInterface, ConfigType

model: BaseModelInterface = AutoModel.from_pretrained(
    pretrained_model_name=ConfigType.AnimeSR_v2_4x
)

clip = core.bs.VideoSource(source="s.mp4")
clip = core.resize.Bicubic(clip=clip, matrix_in_s="709", format=vs.RGBH)
clip = model.inference_video(clip)
clip = core.resize.Bicubic(clip=clip, matrix_s="709", format=vs.YUV420P16)
clip.set_output()

See more examples in the example directory, ccrestoration can register custom configurations and models to extend the functionality

Current Support

It still in development, the following models are supported:

Reference

License

This project is licensed under the MIT - see the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

ccrestoration-0.0.11-py3-none-any.whl (72.3 kB view details)

Uploaded Python 3

File details

Details for the file ccrestoration-0.0.11-py3-none-any.whl.

File metadata

File hashes

Hashes for ccrestoration-0.0.11-py3-none-any.whl
Algorithm Hash digest
SHA256 ac5c231776fab55d81c6a0852f5ab51ddce61c26a93083ada05404bbb1cfd2bd
MD5 7db2983155dbf28fd1ec0356847130fe
BLAKE2b-256 a0ec533c244c61d54b1c65910a35da13e26e2a900123280ceff56ee31bfc5963

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page