Skip to main content

cd2t validates data structure, data types and values with templates

Project description

cd2t

repository: https://gitlab.com/ko.no/cd2t

Table of Content

Key Features

  • Feature Rich Data Type and Value Validation
  • Unlimited Data Structure: Recursive linking of data types like lists or objects can represent any data structure.
  • Data Structure Nesting: Sub schemas allows you to define repeating data structures only once. Sub schema can unlimited nested. Loops are not allowed.
  • Multi Data Support: Multiple data sources can be check with one schema or many schemas. You can switch schemas during iterating over data sources. Referencing or Autogeneration works across schemas and data sources by using namespaces.
  • Referencing: Referencing can check the uniqueness of values at different positions in the data structure (i.e. lists of objects with ID attribute). It also can enforce a consumer/producer modell. In example, strings at some positions can be collected as producers. Strings at other positions must match one of those produced string. Scope of references can be limited to namespace.
  • Value Autogeneration: Some data types support creation of non-existing values. I.e. unique IDs can be added to the data structure. Uniqueness can be limited to namespaces.
  • Multi Data Support: Multiple data sources can be check with one schema or many schemas. You can switch schemas during iterating over data sources. Referencing or Autogeneration works across schemas and data sources - but can also be limited to current data.
  • Schema Validation: Typos, syntax mistakes or missing required options are reported as SchemaErrors (Exception) during schema loading. Reason and path through schema structured are provided.

Change Log

Version 1.5.0:

  • New: Integer Data Type - Autogenerate random value
  • New: Integer Data Type - Autogenerate default value
  • New: Improved Reference Findings
  • Changed: All Data Types - Schema and data path adjustment

Version 1.4.0:

  • New: None Data Type added
  • Fix: Consumer namespace space lookup/linking failed, if producer was processed later.

Version 1.3.1:

  • Fix: Schema Data Type - Validation failed

Version 1.3:

  • New: String Data Type - Consumer referencing with namespace lookup for providers support
  • Changed: Splitting Data Validation (Validator Class) and Data Autogeneration (Autogenerator Class)
  • New: 2-Phase Autogeneration
    • Phase 1: Build references for all data sources
    • Phase 2: Autogenerate data based only full reference information
  • Fix: Object Data Type - Attribute dependencies with regex fixed
  • Fix: Object Data Type - Preserve attribute order during autogeneration

Version 1.2:

  • New: Bool Data Type - Validate allowed value
  • New: Findings - Namespace information added
  • Changed/Fix: Validator method name 'change_namespace'
  • Fix: Schema Data Type - Subschema loop false positives
  • Fix: Referencing - Options for scope definition values
  • Fix: Referencing - Namespace local consumer producer linking
  • Fix: Object Data Type - Dependencies false positives

Version 1.1: withdrawn form pypi.org

  • New: Object Data Type - Allow empty dictionaries in validation
  • Changed: List Data Type - Option 'duplicates' renamed to 'allow_duplicates'

Version 1.0: withdrawn form pypi.org

Data Structure Schema

name: < str >
description: < str >
root: { data type schema }

subschemas:
  < sub schema name >: { data type schema }

Data Type Options

Any Data Type

Description
This data type represents any data. The validator stops further data validation or autogeneration.

Limitations

  • referencing is not supported
  • autogeneration is not supported

Any Schema Keys

type: 'any' # If type is omitted, validator uses Any Data Type

Bool Data Type

Description
This data type represents a boolean values (true/false).

Limitations

  • referencing is not supported

Bool Schema Keys

type: 'bool'

allowed_value: < bool > # true or false

autogenerate: < bool | default -> false >
# Autogenerate the default value, if data is not existing.
# Requires 'autogenerate_default'

autogenerate_default: < bool > # true or false; must match 'allowed_value' (if set)

Enum Data Type

Description
This data type represents a selection of allowed values.

Limitations

  • referencing is not supported
  • autogeneration is not supported

Enum Schema Keys

type: 'enum'

allowed_values: # required
- < value >

Float Data Type

Description
This data type represents float values.

Float Schema Keys

type: 'float'

reference: { unique options }

maximum: < float >
# value must be lower or equal to this

minimum: < float >
# value must be greater or equal to this

maximum_decimals: < int > # >= 0
# Maximum allowed decimal places.

allowed_values:
- < float > # value must match this value
- round: < int > # value rounded to < int > digits must match 'matches'
  matches: < float >
- range_start: < float > # 'range_start' <= value <= 'range_end'
  range_end: < float >
# List of directives which values must match.

not_allowed_values:
- < float > # value mustn't match this value
- round: < int > # value rounded to < int > digits mustn't match 'matches'
  matches: < float >
- range_start: < float > # value < 'range_start' and value > 'range_end'
  range_end: < float >
# List of directives which values mustn't match.

autogenerate: < bool | default -> false >
# uses 'autogenerate_default' value.
#
# OR
#
# try for 'autogenerate_random_tries' times:
#   1. Create a random float value, which is within the 'autogenerate_ranges'
#      or 'minimum' <= random value <= 'maximum'
#   2. Check if random value passes the validation process.

autogenerate_default: < float >
# Autogenerate uses this value.

autogenerate_random_tries: < int | default 10 > # 0 < x < 50
# Ignored, if 'autogenerate_default' is set.
# Maximum amount of tries to find a random float value, which is not used by any reference.
# Integer value must be greater than 0 and lower than 50.

autogenerate_ranges:
- minimum: < float >
  maximum: < float >
# Ignored, if 'autogenerate_default' is set.
# '[.]minimum' <= '[.]maximum'
# Autogenerated float is within the ranges.
# If omitted, global 'minimum' and 'maximum' limits the random value.

autogenerate_random_decimals: < int | default 2 > # >= 0
# Ignored, if 'autogenerate_default' is set.
# Limit the decimal places for the random value.

Validation Process
If options are missing, corresponding checks are skipped.

  1. value >= minimum
  2. value <= maximum
  3. round of value == value
  4. value is not in not_allowed_values
  5. value is in allowed_values

ID-List Data Type

Description
This data type represents a dictionary, where keys are IDs. IDs can be strings or integer.

Limitations

  • autogeneration is not supported

ID-List Schema Keys

type: 'id_list'

reference: { unique options }
# Note: Every ID is referenced as a value with the 'reference.key'.

minimum: <int | default -> 0 > # >= 0
# Minimum required amount of IDs

maximum: < int > # >= 0
# Maximum allowed amount of IDs
# If omitted, even an empty id_list is allowed.

elements: { data type schema } # required
# Data schema defining element data type

id_type: < 'integer' | 'string' | default -> 'string' >
# Indicates if IDs are integer or string

id_minimum: <int | default -> 0 > # >= 0
# Minimum required ID string length or minimum ID integer value

id_maximum: < int > # >= 0
# Maximum required ID string length or maximum ID integer value
# If omitted, even '' is allowed as ID string.

allowed_ids:
- < string | integer >
# List of regex strings or integers - depending on 'id_type'
# If ID matches any of it, the ID is allowed.

not_allowed_ids:
- < string >
# List of regex strings or integers - depending on 'id_type'
# If ID matches any of it, the ID is not allowed.
# 'not_allowed_ids' are test before 'allowed_ids'.

Integer Data Type

Description
This data type represents integer values.

Integer Schema Keys

type: 'integer'

reference: { unique options }

maximum: < int >
# value must be lower or equal to this

minimum: < int >
# value must be greater or equal to this

not_allowed_values:
- < int >
# List of integers which values mustn't match.

autogenerate: < bool | default -> false >
# Requires 'reference.key' to be defined and not ''.
# If no unique value could be generated, autogeneration fails.

autogenerate_default: < int >
# Generate this integer value if value is None. Ignores all other 'autogen' options

autogenerate_maximum: < int >
# Autogenerated integer must be lower or equals to this.
# If omitted, 'maximum' key is upper limit

autogenerate_minimum: < int >
# Autogenerated integer must be greater or equals to this.
# If omitted, 'minimum' key is lower limit

autogenerate_find: < 'next_higher' | 'next_lower' | 'random' | default -> 'next_higher' >
# Ignored, if 'autogenerate_default' is set.
# Tells autogenerate to try first available integer value
# starting at 'minimum' and increasing ('next_higher'),
# starting at 'maximum' and decreasing ('next_lower') or
# picking a random number within 'minimum' and 'maximum'.

List Data Type

Description
This data type represents a list of same data types.
If different data types are allowed in the list, use data type 'multitype' as elements.

Limitations

  • referencing is not supported - use referencing in the 'elements' data type
  • autogeneration of list elements is not supported - but autogeneration within existing elements data structure is supported (pass-through).

List Schema Keys

type: 'list' # required

elements: { data type schema }  # required
# Data schema defining elements data type

minimum: <int | default -> 0 > # >= 0
# Minimum required amount of elements in the list.

maximum: < int > # >= 0
# Maximum allowed amount of elements in the list.

allow_duplicates: < bool | default -> true >
# Allow same element data multiple times

Multitype Data Type

Description
This data type represents a selection of allowed data types.

Limitations

  • referencing is not supported - use referencing in the 'elements' data type
  • autogeneration of data types is not supported - but autogeneration within existing data structure is supported (pass-through).
  • Data Type Selection Rules:
    • Data type Schema is not allowed - use schema in first place and use Multitype in subschema's root data type.
    • Each data type is allowed only once.
    • ID-List and Object are treated as the same data type as both rely on dictionaries.

Multitype Schema Keys

type: 'multitype'
types: # required
- { data type schema }
# List of data type schemas.

None Data Type

Description
This data type represents a none or null value.

Limitations

  • referencing is not supported
  • autogeneration of data types is not supported - it is already none :wink:

Multitype Schema Keys

type: 'none'

Object Data Type

Description
This data type represents an object with attributes. Technically its a dictionary in Python.
Attributes of the object are keys in the dictionary.

Limitations

  • autogeneration of missing keys is supported, if value data type supports autogeneration

Object Schema Keys

type: 'object'

attributes:
  < attribute_name >: { data type schema }
# Mapping with key as attribute name and value as data type schema.
# If omitted, any data which is an dictionary is accepted.

required_attributes:
- < attribute_name >
# List of attribute names, which must be in the object.

ignore_undefined_attributes: < bool | default -> false >
# Tell validator to ignore attributes in data object, which are not defined in 'attributes'.

dependencies:
  < attribute_name >:
    requires:
    - < attribute_name >
    # List of attribute names, which must be in the object, if this attribute is in.
    excludes:
    - < attribute_name >
    # List of attribute names, which must not be in the object, if this attribute is in.

allow_regex_attributes: < bool | default -> False >
# If enabled, regular expressions are allowed in:
# 'attributes': If object attribute name matches, schema is verified.
# 'required_attributes': Each element must have a at least one matching attribute name.
# 'dependencies.<>.requires': Successful if any object attribute name matches each list entry.
# 'dependencies.<>.excludes': Error if any object attribute name matches any list entry.
# !!! Disables autogeneration of missing keys !!!

autogenerate: < bool | default -> True >
# Enable/Disable autogeneration of missing attributes,
# if attribute's data type supports autogeneration and is defined within.

reference: { reference options }
# The validator checks, if the same combination of attribute values is specified at
# another data type with the same reference.key.
# Requires 'reference_attributes' to be defined.
    
reference_attributes:
- < attribute_name >
# List of attribute names, which values should be combined uniqueness check.

Schema Data Type

Description
This data type does not represents an expected data value.
It uses a subschema's root data type to process the data structure.

Schema Schema Keys

type: 'schema'

subschema: < str >
# Name of the subschema, which is defined under 'subschemas' in schema.

String Data Type

Description
This data type represents a string.

Limitations

  • autogeneration is not supported.

String Schema Keys

type: 'string'

reference:
  # global reference options plus:
  allow_namespace_lookups: < bool > # Only valid for 'consumer' mode
  namespace_separator_char: < string >
# Process:
# - Check if *namespace_separator_char* is in string value
# - extract namespace from left part of first finding
# - extract value from right part of first finding
# - lookup for *provider value* == *extracted value* in namespace *extracted namespace* for reference.key

minimum: <int | default -> 0 > # >= 0
# Minimum required string length

maximum: < int > # >= 0
# Maximum allowed string length

allowed_values:
- < string >
# List of strings
# Dependis on 'regex_mode':
# == false: String must be equal to any string in the list.
# == true: String must match with any regex in the list.

not_allowed_values:
- < string >
# List of strings
# Dependis on 'regex_mode':
# == false: String mustn't be equal to any string in the list.
# == true: String mustn't match with any regex in the list.

regex_mode: < bool | default -> false >
# Use strings in 'allowed_values' and 'not_allowed_values' for regex matching.

regex_multiline: < bool | default -> false >
# Use multiline matching for regex tests or not

regex_fullmatch: < bool | default -> true >
# String must fully match.

Reference Options

If data type supports referencing, these options are available.

reference:
  key: < string > # required
  # Identifier to map data at different positions in the data structure

  # Define the reference mode.
  mode: < 'unique' | 'producer' | 'consumer' | default -> 'unique' >
  # - 'producer': collect values as allowed values for 'consumer' positions.
  # - 'unique': Inherits 'producer' and checks uniqueness of the value
  #   among other values at other positions with the same key.
  # - 'consumer': data value must match to a 'producer' value.

  allow_orphan_producer: < bool | default -> true >
  # If disabled, producer value without a consumer are not allowed.

  # Select the scope of the reference.
  unique_scope: < 'namespace' | 'global' | default -> 'global' > # Ignored in 'provider' or 'consumer' mode
  provider_scope: < 'namespace' | 'global' | default -> 'global' > # 'ignored in 'consumer' mode
  consumer_scope: < 'namespace' | 'global' | default -> 'global' > # Ignored in 'unique' or 'provider' mode
  # 'namespace' scopes to the same namespace data only. References across namespaces only works,
  # if both 'ends' specify 'global'.

Python Code Example

import os
import yaml
from cd2t import Validator

with open('my_schema.yml') as f:
    schema = yaml.load(f)

validator = Validator()
validator.load_schema(schema)

results = list()
for filename in os.listdir('./my_data_folder'):
    with open(filename) as f:
        test_data = yaml.load(f)
    validator.change_namespace(filename)
    _results = validator.validate_data(test_data)
    results.extend(_results)
    _results = validator.references.get_producer_consumer_issues()
    results.extend(_results)

print('\n'.join(results))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cd2t-1.5.0.tar.gz (30.6 kB view details)

Uploaded Source

Built Distribution

cd2t-1.5.0-py3-none-any.whl (40.1 kB view details)

Uploaded Python 3

File details

Details for the file cd2t-1.5.0.tar.gz.

File metadata

  • Download URL: cd2t-1.5.0.tar.gz
  • Upload date:
  • Size: 30.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.23.3

File hashes

Hashes for cd2t-1.5.0.tar.gz
Algorithm Hash digest
SHA256 077fb2f576eb8478591493bc217b626a803cda9a10799915a56f40c8bdd31145
MD5 556c22d0f1e4b66bce73a3ae093758d1
BLAKE2b-256 8280d4ee6f03a596b12f5bc99d40ed1cb53a5ddbeb09054609655e33f895e1e3

See more details on using hashes here.

File details

Details for the file cd2t-1.5.0-py3-none-any.whl.

File metadata

  • Download URL: cd2t-1.5.0-py3-none-any.whl
  • Upload date:
  • Size: 40.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.23.3

File hashes

Hashes for cd2t-1.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 a0fe2337fd03e0e652bafe7b5219fde0ba64740bdeb0a6a688e85921a88eba76
MD5 72b5616db2865c1d7563f6e0cf1e1ded
BLAKE2b-256 37097b4e389d39b6dbc50d198719dd14245ad234f6961f78dd37892922a1437e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page