Compute the CDbw validity index
Project description
CDbw
Compute the S_Dbw validity index
S_Dbw validity index is defined by equation:
CDbw = compactness*cohesion*separation
Highest value -> better clustering.
Installation:
pip install --upgrade cdbw
Usage:
from cdbw import CDbw
score = CDbw(X, labels, metric="euclidean", alg_noise='comb',
intra_dens_inf=False, s=3, multipliers=False)
Parameters:
X : array-like, shape (n_samples, n_features)
List of n_features-dimensional data points. Each row corresponds
to a single data point.
labels : array-like, shape (n_samples,)
Predicted labels for each sample. (-1 - for noise)
metric : str,
The distance metric, can be ‘braycurtis’, ‘canberra’, ‘chebyshev’, ‘cityblock’, ‘correlation’,
‘cosine’, ‘dice’, ‘euclidean’, ‘hamming’, ‘jaccard’, ‘kulsinski’, ‘mahalanobis’, ‘matching’, ‘minkowski’,
‘rogerstanimoto’, ‘russellrao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeuclidean’, ‘wminkowski’,
‘yule’.
alg_noise : str,
Algorithm for recording noise points.
'comb' - combining all noise points into one cluster (default)
'sep' - definition of each noise point as a separate cluster
'bind' - binding of each noise point to the cluster nearest from it
'filter' - filtering noise points
intra_dens_inf : bool,
If False (default) CDbw index = 0 for cohesion or compactness - inf or nan.
s : int,
Number of art representative points. (>2)
multipliers : bool,
Format of output. False (default) - only CDbw index, True - tuple (compactness, cohesion, separation, CDbw)
Returns:
cdbw : float,
The resulting CDbw validity index.
References:
- M. Halkidi and M. Vazirgiannis, “A density-based cluster validity approach using multi-representatives” Pattern Recognition Letters 29 (2008) 773–786.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
cdbw-0.2.tar.gz
(8.6 kB
view details)
Built Distribution
cdbw-0.2-py3-none-any.whl
(8.0 kB
view details)
File details
Details for the file cdbw-0.2.tar.gz
.
File metadata
- Download URL: cdbw-0.2.tar.gz
- Upload date:
- Size: 8.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 616c6d29bbff01e5695588229527ce271c9fe1fef671515bc823b8244d50f161 |
|
MD5 | fcb910d39b970a186582070df9351cd9 |
|
BLAKE2b-256 | 15495e1751cd8eeeba37f306ec1c4b4b0f6f1be8c4021e8c3b58c0559b5d2232 |
File details
Details for the file cdbw-0.2-py3-none-any.whl
.
File metadata
- Download URL: cdbw-0.2-py3-none-any.whl
- Upload date:
- Size: 8.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4b4be00dfae7911bebfd72416584dfbc9d21674ee2447898a71bbd2330db4089 |
|
MD5 | 142987e7dd78e5182f7df5b5f8fb658e |
|
BLAKE2b-256 | 18b7690e4758d06446b235fee7e7f6b1ef1cded365e78eb09925bda0906c41d8 |