Skip to main content

Compute the CDbw validity index

Project description

CDbw

Compute the S_Dbw validity index
S_Dbw validity index is defined by equation:

CDbw = compactness*cohesion*separation

Highest value -> better clustering.


Installation:

pip install --upgrade cdbw

Usage:

from cdbw import CDbw
score = CDbw(X, labels, metric="euclidean", alg_noise='comb', 
     intra_dens_inf=False, s=3, multipliers=False)

Parameters:

X : array-like, shape (n_samples, n_features)
    List of n_features-dimensional data points. Each row corresponds
    to a single data point.
labels : array-like, shape (n_samples,)
    Predicted labels for each sample.  (-1 - for noise)
metric : str,
    The distance metric, can be ‘braycurtis’, ‘canberra’, ‘chebyshev’, ‘cityblock’, ‘correlation’,
    ‘cosine’, ‘dice’, ‘euclidean’, ‘hamming’, ‘jaccard’, ‘kulsinski’, ‘mahalanobis’, ‘matching’, ‘minkowski’,
    ‘rogerstanimoto’, ‘russellrao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeuclidean’, ‘wminkowski’,
    ‘yule’.
alg_noise : str,
    Algorithm for recording noise points.
    'comb' - combining all noise points into one cluster (default)
    'sep' - definition of each noise point as a separate cluster
    'bind' -  binding of each noise point to the cluster nearest from it
    'filter' - filtering noise points
intra_dens_inf : bool,
    If False (default) CDbw index = 0 for cohesion or compactness - inf or nan.
s : int,
    Number of art representative points. (>2)
multipliers : bool,
    Format of output. False (default) - only CDbw index, True - tuple (compactness, cohesion, separation, CDbw)

Returns:

cdbw : float,
    The resulting CDbw validity index.

References:

  1. M. Halkidi and M. Vazirgiannis, “A density-based cluster validity approach using multi-representatives” Pattern Recognition Letters 29 (2008) 773–786.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cdbw-0.2.tar.gz (8.6 kB view details)

Uploaded Source

Built Distribution

cdbw-0.2-py3-none-any.whl (8.0 kB view details)

Uploaded Python 3

File details

Details for the file cdbw-0.2.tar.gz.

File metadata

  • Download URL: cdbw-0.2.tar.gz
  • Upload date:
  • Size: 8.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.7

File hashes

Hashes for cdbw-0.2.tar.gz
Algorithm Hash digest
SHA256 616c6d29bbff01e5695588229527ce271c9fe1fef671515bc823b8244d50f161
MD5 fcb910d39b970a186582070df9351cd9
BLAKE2b-256 15495e1751cd8eeeba37f306ec1c4b4b0f6f1be8c4021e8c3b58c0559b5d2232

See more details on using hashes here.

File details

Details for the file cdbw-0.2-py3-none-any.whl.

File metadata

  • Download URL: cdbw-0.2-py3-none-any.whl
  • Upload date:
  • Size: 8.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.7

File hashes

Hashes for cdbw-0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 4b4be00dfae7911bebfd72416584dfbc9d21674ee2447898a71bbd2330db4089
MD5 142987e7dd78e5182f7df5b5f8fb658e
BLAKE2b-256 18b7690e4758d06446b235fee7e7f6b1ef1cded365e78eb09925bda0906c41d8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page