Skip to main content

Framework for conditional density estimation

Project description

Build Status Downloads

Conditional Density Estimation (CDE)

Description

Implementations of various methods for conditional density estimation

  • Parametric neural network based methods
    • Mixture Density Network (MDN)
    • Kernel Mixture Network (KMN)
    • Normalizing Flows (NF)
  • Nonparametric methods
    • Conditional Kernel Density Estimation (CKDE)
    • Neighborhood Kernel Density Estimation (NKDE)
  • Semiparametric methods
    • Least Squares Conditional Density Estimation (LSKDE)

Beyond estimating conditional probability densities, the package features extensive functionality for computing:

  • Centered moments: mean, covariance, skewness and kurtosis
  • Statistical divergences: KL-divergence, JS-divergence, Hellinger distance
  • Percentiles and expected shortfall

Installation

To use the library, you can directly use the python package index:

pip install cde

or clone the GitHub repository and run

pip install .

Note that the package only supports tensorflow versions between 1.4 and 1.7.

Documentation and paper

See the documentation here. A paper on best practices and benchmarks on conditional density estimation with neural networks that makes extensive use of this library can be found here.

Usage

The following code snipped holds an easy example that demonstrates how to use the cde package.

from cde.density_simulation import SkewNormal
from cde.density_estimator import KernelMixtureNetwork
import numpy as np

""" simulate some data """
density_simulator = SkewNormal(random_seed=22)
X, Y = density_simulator.simulate(n_samples=3000)

""" fit density model """
model = KernelMixtureNetwork("KDE_demo", ndim_x=1, ndim_y=1, n_centers=50,
                             x_noise_std=0.2, y_noise_std=0.1, random_seed=22)
model.fit(X, Y)

""" query the conditional pdf and cdf """
x_cond = np.zeros((1, 1))
y_query = np.ones((1, 1)) * 0.1
prob = model.pdf(x_cond, y_query)
cum_prob = model.cdf(x_cond, y_query)

""" compute conditional moments & VaR  """
mean = model.mean_(x_cond)[0][0]
std = model.std_(x_cond)[0][0]
skewness = model.skewness(x_cond)[0]

Citing

If you use CDE in your research, you can cite it as follows:

@article{rothfuss2019conditional,
  title={Conditional Density Estimation with Neural Networks: Best Practices and Benchmarks},
  author={Rothfuss, Jonas and Ferreira, Fabio and Walther, Simon and Ulrich, Maxim},
  journal={arXiv:1903.00954},
  year={2019}
}

Todo

  • creating a branch just for our conditional estimators + python package

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cde-0.6.1.tar.gz (121.1 kB view details)

Uploaded Source

File details

Details for the file cde-0.6.1.tar.gz.

File metadata

  • Download URL: cde-0.6.1.tar.gz
  • Upload date:
  • Size: 121.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.35.0 CPython/3.6.8

File hashes

Hashes for cde-0.6.1.tar.gz
Algorithm Hash digest
SHA256 a781f46f8f7b566453ca16fb59d85ad5ae3d2a17d54da4c1ab70d599837d0351
MD5 f82ba520d5f47eb71919e20243e2c9e8
BLAKE2b-256 9c8cfc3be557e738b91bc203e73d4068186dc94a32c6ad10770d9af957793cd5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page