Skip to main content

Usefull differ function with Levenshtein distance.

Project description

Python C Extention 2 Sequence Compare

Upload pypi.org

Usefull differ function with Levenshtein distance.

How to Install?

pip install cdiffer

Requirement

  • python3.6 or later
  • python2.7

cdiffer.dist

Compute absolute Levenshtein distance of two strings.

Usage

dist(sequence, sequence)

Examples (it's hard to spell Levenshtein correctly):

>>> from cdiffer import dist
>>>
>>> dist('coffee', 'cafe')
3
>>> dist(list('coffee'), list('cafe'))
3
>>> dist(tuple('coffee'), tuple('cafe'))
3
>>> dist(iter('coffee'), iter('cafe'))
3
>>> dist(range(4), range(5))
1
>>> dist('coffee', 'xxxxxx')
6
>>> dist('coffee', 'coffee')
0

cdiffer.similar

Compute similarity of two strings.

Usage

similar(sequence, sequence)

The similarity is a number between 0 and 1, it's usually equal or somewhat higher than difflib.SequenceMatcher.ratio(), because it's based on real minimal edit distance.

Examples

>>> from cdiffer import similar
>>>
>>> similar('coffee', 'cafe')
0.6
>>> similar('hoge', 'bar')
0.0

cdiffer.differ

Find sequence of edit operations transforming one string to another.

Usage

differ(source_sequence, destination_sequence, diffonly=False)

Examples

>>> from cdiffer import differ
>>>
>>> for x in differ('coffee', 'cafe'):
...     print(x)
...
['equal',   0, 0,   'c', 'c']
['replace', 1, 1,   'o', 'a']
['equal',   2, 2,   'f', 'f']
['delete',  3, None,'f',None]
['delete',  4, None,'e',None]
['equal',   5, 3,   'e', 'e']
>>> for x in differ('coffee', 'cafe', diffonly=True):
...     print(x)
...
['replace', 1, 1,   'o', 'a']
['delete',  3, None,'f',None]
['delete',  4, None,'e',None]

Performance

C:\Windows\system>ipython
Python 3.7.7 (tags/v3.7.7:d7c567b08f, Mar 10 2020, 10:41:24) [MSC v.1900 64 bit (AMD64)]
Type 'copyright', 'credits' or 'license' for more information
IPython 7.21.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: from cdiffer import *

In [2]: %timeit dist('coffee', 'cafe')
   ...: %timeit dist(list('coffee'), list('cafe'))
   ...: %timeit dist(tuple('coffee'), tuple('cafe'))
   ...: %timeit dist(iter('coffee'), iter('cafe'))
   ...: %timeit dist(range(4), range(5))
   ...: %timeit dist('coffee', 'xxxxxx')
   ...: %timeit dist('coffee', 'coffee')
   ...:
173 ns ± 0.206 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
741 ns ± 2.4 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
702 ns ± 2.15 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
706 ns ± 7.79 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
882 ns ± 7.51 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
210 ns ± 0.335 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
51.8 ns ± 1.18 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)

In [3]: %timeit similar('coffee', 'cafe')
   ...: %timeit similar(list('coffee'), list('cafe'))
   ...: %timeit similar(tuple('coffee'), tuple('cafe'))
   ...: %timeit similar(iter('coffee'), iter('cafe'))
   ...: %timeit similar(range(4), range(5))
   ...: %timeit similar('coffee', 'xxxxxx')
   ...: %timeit similar('coffee', 'coffee')
   ...:
186 ns ± 0.476 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
718 ns ± 0.878 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
691 ns ± 1.42 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
706 ns ± 2.01 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
920 ns ± 8.2 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
223 ns ± 0.938 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
55 ns ± 0.308 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)

In [4]: %timeit differ('coffee', 'cafe')
   ...: %timeit differ(list('coffee'), list('cafe'))
   ...: %timeit differ(tuple('coffee'), tuple('cafe'))
   ...: %timeit differ(iter('coffee'), iter('cafe'))
   ...: %timeit differ(range(4), range(5))
   ...: %timeit differ('coffee', 'xxxxxx')
   ...: %timeit differ('coffee', 'coffee')
   ...:
814 ns ± 2.79 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.36 µs ± 2.02 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.33 µs ± 4.19 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.37 µs ± 4.64 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
2.03 µs ± 19.1 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
865 ns ± 1.89 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
724 ns ± 1.72 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [5]: a = dict(zip('012345', 'coffee'))
   ...: b = dict(zip('0123', 'cafe'))
   ...: %timeit dist(a, b)
   ...: %timeit similar(a, b)
   ...: %timeit differ(a, b)
320 ns ± 1.26 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
327 ns ± 1.2 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
983 ns ± 17.1 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cdiffer-0.1.7.tar.gz (23.9 kB view details)

Uploaded Source

Built Distributions

cdiffer-0.1.7-cp39-cp39-win_amd64.whl (23.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

cdiffer-0.1.7-cp39-cp39-manylinux2014_aarch64.whl (53.6 kB view details)

Uploaded CPython 3.9

cdiffer-0.1.7-cp39-cp39-manylinux2010_x86_64.whl (55.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

cdiffer-0.1.7-cp39-cp39-macosx_10_15_x86_64.whl (22.5 kB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

cdiffer-0.1.7-cp38-cp38-win_amd64.whl (23.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

cdiffer-0.1.7-cp38-cp38-manylinux2014_aarch64.whl (54.2 kB view details)

Uploaded CPython 3.8

cdiffer-0.1.7-cp38-cp38-manylinux2010_x86_64.whl (56.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

cdiffer-0.1.7-cp38-cp38-macosx_10_15_x86_64.whl (22.5 kB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

cdiffer-0.1.7-cp37-cp37m-win_amd64.whl (23.4 kB view details)

Uploaded CPython 3.7m Windows x86-64

cdiffer-0.1.7-cp37-cp37m-manylinux2014_aarch64.whl (53.8 kB view details)

Uploaded CPython 3.7m

cdiffer-0.1.7-cp37-cp37m-manylinux2010_x86_64.whl (55.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

cdiffer-0.1.7-cp37-cp37m-macosx_10_15_x86_64.whl (22.5 kB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

cdiffer-0.1.7-cp36-cp36m-win_amd64.whl (23.4 kB view details)

Uploaded CPython 3.6m Windows x86-64

cdiffer-0.1.7-cp36-cp36m-manylinux2014_aarch64.whl (52.9 kB view details)

Uploaded CPython 3.6m

cdiffer-0.1.7-cp36-cp36m-manylinux2010_x86_64.whl (54.8 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

cdiffer-0.1.7-cp36-cp36m-macosx_10_15_x86_64.whl (22.5 kB view details)

Uploaded CPython 3.6m macOS 10.15+ x86-64

cdiffer-0.1.7-cp27-cp27mu-manylinux2014_aarch64.whl (48.7 kB view details)

Uploaded CPython 2.7mu

cdiffer-0.1.7-cp27-cp27mu-manylinux2010_x86_64.whl (51.0 kB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ x86-64

cdiffer-0.1.7-cp27-cp27m-macosx_10_15_x86_64.whl (22.0 kB view details)

Uploaded CPython 2.7m macOS 10.15+ x86-64

File details

Details for the file cdiffer-0.1.7.tar.gz.

File metadata

  • Download URL: cdiffer-0.1.7.tar.gz
  • Upload date:
  • Size: 23.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.7.tar.gz
Algorithm Hash digest
SHA256 44fb67aa3008db28bb41b069a5204bef95dcec7c0004783873a5185d660c89bb
MD5 f19511c9d0a3b5e67bae50872c69ce3f
BLAKE2b-256 5d0f35234e8f5ef66980dd75c893762b84d0aa96ad0973f64eacd635e1ed5462

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.7-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: cdiffer-0.1.7-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 23.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.7-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2fd875913cf6cc8195611aed4aebb589d6e63fdeb9860fbed7e60c2e82eb9fdc
MD5 cb5159062efbe1525ca95883774f2e01
BLAKE2b-256 a7f026e1c1422c24a4c8b5ec01625edfa6433d4cb6901a71d923c3cbc01ee538

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.7-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

  • Download URL: cdiffer-0.1.7-cp39-cp39-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 53.6 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.7-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9d9ead743b903f97c9dba21c136d229b9464eed237348360fdfe5870a2198f4a
MD5 66ba39d18c63e2a6d7488882fa22ef19
BLAKE2b-256 afa9151cf63dac82101e96f83ff0fa3349eaa23e1b3bfca5e54e07d1946418de

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.7-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.1.7-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 55.5 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.7-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1d27005c542366ae83e531cd261a1ba26842edbd386dd5280a48ee972fc95aa1
MD5 0cea127c4574bc6605e47145dd49bf34
BLAKE2b-256 e49dfe2008f4c93c5b6f0ee0932f0891bf50a24bbf480347695ef302166a7a2f

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.7-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.1.7-cp39-cp39-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 22.5 kB
  • Tags: CPython 3.9, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.7-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 5fa5f036f4feaabd898e7b2826e93ba0210560a488eb5407917363379704f586
MD5 2e3d4ac05435e5cca719d3ce45e43a5c
BLAKE2b-256 9bc03da95eb63f317128c02d051943dbf14c1049940cf4ae0e534335c3f9d15a

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.7-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: cdiffer-0.1.7-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 23.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.7-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5abda1e5349cdfae54c0c7ef3d9d1f28828dfde82946d69693f6e019fc7f579b
MD5 0a22d57a06a604e594d2193f6a05a2dd
BLAKE2b-256 6a3182c289243ad19cec9ea55c8a80721b0448e95901d9d0827d750989299bbc

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.7-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: cdiffer-0.1.7-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 54.2 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.7-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e99e7c80c4733ac36480e1a56bffe911a8c9e9b24f8742db36517da8279da19a
MD5 02f56d5e05fbf01354bca3d5267eea62
BLAKE2b-256 1bbdf6aa1b0cd5cd093325f7571708262d18a65be319ddd2a8d3cf7909caacdf

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.7-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.1.7-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 56.2 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.7-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6e14a54f7cb4d0d5f8398dc175038be0ae51996c0a2da26ce60f91b904a4d56d
MD5 1dd52778194626f88efd22f7f37449e3
BLAKE2b-256 7f2ece2a41d913dc47bd068fa81fc55b5a101bbb3627d690bd07a01931c50281

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.7-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.1.7-cp38-cp38-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 22.5 kB
  • Tags: CPython 3.8, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.7-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 0bacae38e7a29c2e2cd4321c31cfd9c202b1219de30f58df7e7097e69c1f5fbd
MD5 6976cd6147c8bb7076b44880d152b603
BLAKE2b-256 f9cade7d5dc3daf603a07922d17736ada8f1b63c30587f8a73abbda133b1512a

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.7-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: cdiffer-0.1.7-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 23.4 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.7-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4e0d248fa39d73ccacf394caf86bc6ec80b9a494f4f3a851471c32406ac782fc
MD5 e2e97e7dac00fde5f674a74bd74695da
BLAKE2b-256 2603ca80b5eabe529e232c5e25f67a301f7ee6505f6bcd708605ca7ec12bb8f2

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.7-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: cdiffer-0.1.7-cp37-cp37m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 53.8 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.7-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5a01bb9fafc4a2c46da04619bd873b7bdbce9f3ceaefb51172acb28961869373
MD5 3660632a66847c01f907c45b9c50e954
BLAKE2b-256 a9983a1232c360256a1bb304eb908769d54b95acf210bbe26c29680d4fc33ec1

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.7-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.1.7-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 55.8 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.7-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 093718ed3b5ba71abf3c06895961a6b6c04eda5dd1d8fe554f2a303e8e9007f8
MD5 f9bb70340c8e5ce1e26863327edf1163
BLAKE2b-256 0bf718ab851c4ca7b6d24b17c315a892dd9cc96429c3f69ab8b22f943e9ed12d

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.7-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.1.7-cp37-cp37m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 22.5 kB
  • Tags: CPython 3.7m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.7-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 dc589a3a68235dbd1ed627c1eeca9d69f563e361ba22b362ac89624b309186ab
MD5 8433e4dcf74c61f088e375e110f09f18
BLAKE2b-256 9accacb31adff77bc2e0ee950ccde53a6a54b215108c4b380b42cf4e30905581

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.7-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: cdiffer-0.1.7-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 23.4 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.7-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 5b7198eb944912e67aba4a55a312413cc8916f1fbe754cd27d94c433bf88c4f3
MD5 5b3252a248f01b820d0d89edebd6f793
BLAKE2b-256 b0da4279ab6efdb7e895f498dc67aec7eb1eb834a0d1892120cd9f69c1d6b6b6

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.7-cp36-cp36m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: cdiffer-0.1.7-cp36-cp36m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 52.9 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.7-cp36-cp36m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 99e839402d9879979be67629f2b4f019cb09e97dcfe9c09681d291c4f38be6d2
MD5 dae536b5063aebfa3e4046d5763165c8
BLAKE2b-256 33b4ccc5fba39ba567d973a5284a1b11a974656a0593d14e7e6a6d1a7b57753b

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.7-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.1.7-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 54.8 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.7-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3cecaca4aa40663943ed53f0a318e97087fd41131e1252b00937460b7a8f9ae1
MD5 9141c3562109e20d4335758a521d57ab
BLAKE2b-256 3cc6ecac9db8afb1cc972dc0ab4543af8e36617a16798c5ca7a7ee3eb34a7cd7

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.7-cp36-cp36m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.1.7-cp36-cp36m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 22.5 kB
  • Tags: CPython 3.6m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.7-cp36-cp36m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 e8c9ffea05eb98bf8355053b3edde37eb4b2eadc2ae3739fd27f577a1c6f229a
MD5 6fc01cf36e7608a315869bea03072e66
BLAKE2b-256 d7bde1e2052ab0caeaae30e5b7478af211630aec2e3ecb4592c67e5c851a098c

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.7-cp27-cp27mu-manylinux2014_aarch64.whl.

File metadata

  • Download URL: cdiffer-0.1.7-cp27-cp27mu-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 48.7 kB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.7-cp27-cp27mu-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b04a4888cdab72154c053ad9f5d770b93ebc6c8302d10ccd75230571623e3ce4
MD5 3b51cd61f523acd3e8d8d70b0d73c8a7
BLAKE2b-256 64df15e6a22c0477cbcbd7e048600deafc91190adcf6ca59d837f7298b8aeb4f

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.7-cp27-cp27mu-manylinux2010_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.1.7-cp27-cp27mu-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 51.0 kB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.7-cp27-cp27mu-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 894111fdf162626f1de44f4619806b4726d987c35bc443e4dd707157be3a4b1e
MD5 30cfd7e4b2515876722c934303c6bbe9
BLAKE2b-256 834f94999259ff1c165f36eddf80cb22069273f99eb457506591114b4a6777a6

See more details on using hashes here.

File details

Details for the file cdiffer-0.1.7-cp27-cp27m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.1.7-cp27-cp27m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 22.0 kB
  • Tags: CPython 2.7m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for cdiffer-0.1.7-cp27-cp27m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 4095db922fe5cf54f798a0ae14a46655f89ad0808228b647e87c5eb31bf96ff0
MD5 a09652f5dc157f98fca86d86fac20c9f
BLAKE2b-256 c45c2af1ec406df7c76071d2c4f19ae8879383ed1a0272b52aff7f87d33f47f8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page