Skip to main content

Edit distance, Similarity and 2 sequence differences printing

Project description

Python C Extention 2 Sequence Compare

Upload pypi.org

Edit distance, Similarity and 2 sequence differences printing.

How to Install?

pip install cdiffer

Requirement

  • python3.6 or later
  • python2.7

cdiffer.dist

Compute absolute Levenshtein distance of two strings.

Usage

dist(sequence, sequence)

Examples (it's hard to spell Levenshtein correctly):

Help on built-in function dist in module cdiffer:

dist(...)
    Compute absolute Levenshtein distance of two strings.

    dist(sequence, sequence)

    Examples (it's hard to spell Levenshtein correctly):

    >>> dist('coffee', 'cafe')
    4
    >>> dist(list('coffee'), list('cafe'))
    4
    >>> dist(tuple('coffee'), tuple('cafe'))
    4
    >>> dist(iter('coffee'), iter('cafe'))
    4
    >>> dist(range(4), range(5))
    1
    >>> dist('coffee', 'xxxxxx')
    12
    >>> dist('coffee', 'coffee')
    0

cdiffer.similar

Compute similarity of two strings.

Usage

similar(sequence, sequence)

The similarity is a number between 0 and 1, base on levenshtein edit distance.

Examples

>>> from cdiffer import similar
>>>
>>> similar('coffee', 'cafe')
0.6
>>> similar('hoge', 'bar')
0.0

cdiffer.differ

Find sequence of edit operations transforming one string to another.

Usage

differ(source_sequence, destination_sequence, diffonly=False, rep_rate=60)

Examples

>>> from cdiffer import differ
>>>
    >>> for x in differ('coffee', 'cafe'):
    ...     print(x)
    ...
    ['equal',   0, 0,   'c', 'c']
    ['delete',  1, None,'o',None]
    ['insert',  None, 1,None,'a']
    ['equal',   2, 2,   'f', 'f']
    ['delete',  3, None,'f',None]
    ['delete',  4, None,'e',None]
    ['equal',   5, 3,   'e', 'e']
    >>> for x in differ('coffee', 'cafe', diffonly=True):
    ...     print(x)
    ...
    ['delete',  1, None,'o',None]
    ['insert',  None, 1,None,'a']
    ['delete',  3, None,'f',None]
    ['delete',  4, None,'e',None]

    >>> for x in differ('coffee', 'cafe', rep_rate = 0):
    ...     print(x)
    ...
    ['equal',   0, 0,   'c', 'c']
    ['replace', 1, 1,   'o', 'a']
    ['equal',   2, 2,   'f', 'f']
    ['delete',  3, None,'f',None]
    ['delete',  4, None,'e',None]
    ['equal',   5, 3,   'e', 'e']
    >>> for x in differ('coffee', 'cafe', diffonly=True, rep_rate = 0):
    ...     print(x)
    ...
    ['replace', 1, 1,   'o', 'a']
    ['delete',  3, None,'f',None]
    ['delete',  4, None,'e',None]

cdiffer.compare

compare and prety printing 2 sequence data.

Usage

compare(source_sequence, destination_sequence, diffonly=False, rep_rate=60, condition_value=" ---> ")

Examples

>>> from cdiffer import compare
... compare('coffee', 'cafe')
[[60, 'insert', 'c', 'a', 'f', 'e'],
 [60, 'delete', 'c', 'o', 'f', 'f', 'e', 'e']]

Performance

C:\Windows\system>ipython
Python 3.7.7 (tags/v3.7.7:d7c567b08f, Mar 10 2020, 10:41:24) [MSC v.1900 64 bit (AMD64)]
Type 'copyright', 'credits' or 'license' for more information
IPython 7.21.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: from cdiffer import *

In [2]: %timeit dist('coffee', 'cafe')
   ...: %timeit dist(list('coffee'), list('cafe'))
   ...: %timeit dist(tuple('coffee'), tuple('cafe'))
   ...: %timeit dist(iter('coffee'), iter('cafe'))
   ...: %timeit dist(range(4), range(5))
   ...: %timeit dist('coffee', 'xxxxxx')
   ...: %timeit dist('coffee', 'coffee')
125 ns ± 0.534 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
677 ns ± 2.3 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
638 ns ± 3.42 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
681 ns ± 2.16 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
843 ns ± 3.66 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
125 ns ± 0.417 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
50.5 ns ± 0.338 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)

In [3]: %timeit similar('coffee', 'cafe')
   ...: %timeit similar(list('coffee'), list('cafe'))
   ...: %timeit similar(tuple('coffee'), tuple('cafe'))
   ...: %timeit similar(iter('coffee'), iter('cafe'))
   ...: %timeit similar(range(4), range(5))
   ...: %timeit similar('coffee', 'xxxxxx')
   ...: %timeit similar('coffee', 'coffee')
123 ns ± 0.301 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
680 ns ± 2.64 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
647 ns ± 1.78 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
680 ns ± 7.57 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
848 ns ± 4.19 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
130 ns ± 0.595 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
54.8 ns ± 0.691 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)

In [4]: %timeit differ('coffee', 'cafe')
    ...: %timeit differ(list('coffee'), list('cafe'))
    ...: %timeit differ(tuple('coffee'), tuple('cafe'))
    ...: %timeit differ(iter('coffee'), iter('cafe'))
    ...: %timeit differ(range(4), range(5))
    ...: %timeit differ('coffee', 'xxxxxx')
    ...: %timeit differ('coffee', 'coffee')
735 ns ± 4.18 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.36 µs ± 5.17 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.31 µs ± 5.25 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.37 µs ± 5.04 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.33 µs ± 5.32 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.07 µs ± 6.75 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
638 ns ± 3.67 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [5]: a = dict(zip('012345', 'coffee'))
    ...: b = dict(zip('0123', 'cafe'))
    ...: %timeit dist(a, b)
    ...: %timeit similar(a, b)
    ...: %timeit differ(a, b)
524 ns ± 2.6 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
539 ns ± 2.23 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.07 µs ± 1.9 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [6]: %timeit compare("coffee", "cafe")
    ...: %timeit compare([list("abc"), list("abc")], [list("abc"), list("acc"), list("xtz")], rep_rate=50)
    ...: %timeit compare(["abc", "abc"], ["abc", "acc", "xtz"], rep_rate=40)
    ...: %timeit compare(["abc", "abc"], ["abc", "acc", "xtz"], rep_rate=50)
844 ns ± 3.88 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
3.32 µs ± 6.92 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
1.16 µs ± 3.94 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.3 µs ± 31.5 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cdiffer-0.5.3.tar.gz (21.2 kB view details)

Uploaded Source

Built Distributions

cdiffer-0.5.3-cp39-cp39-win_amd64.whl (663.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

cdiffer-0.5.3-cp39-cp39-manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9

cdiffer-0.5.3-cp39-cp39-manylinux2010_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

cdiffer-0.5.3-cp39-cp39-macosx_10_16_x86_64.whl (622.0 kB view details)

Uploaded CPython 3.9 macOS 10.16+ x86-64

cdiffer-0.5.3-cp38-cp38-win_amd64.whl (663.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

cdiffer-0.5.3-cp38-cp38-manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.8

cdiffer-0.5.3-cp38-cp38-manylinux2010_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

cdiffer-0.5.3-cp38-cp38-macosx_10_16_x86_64.whl (621.5 kB view details)

Uploaded CPython 3.8 macOS 10.16+ x86-64

cdiffer-0.5.3-cp37-cp37m-win_amd64.whl (692.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

cdiffer-0.5.3-cp37-cp37m-manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m

cdiffer-0.5.3-cp37-cp37m-manylinux2010_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

cdiffer-0.5.3-cp37-cp37m-macosx_10_16_x86_64.whl (689.5 kB view details)

Uploaded CPython 3.7m macOS 10.16+ x86-64

cdiffer-0.5.3-cp36-cp36m-win_amd64.whl (692.6 kB view details)

Uploaded CPython 3.6m Windows x86-64

cdiffer-0.5.3-cp36-cp36m-manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.6m

cdiffer-0.5.3-cp36-cp36m-manylinux2010_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

cdiffer-0.5.3-cp36-cp36m-macosx_10_16_x86_64.whl (689.5 kB view details)

Uploaded CPython 3.6m macOS 10.16+ x86-64

cdiffer-0.5.3-cp27-cp27mu-manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 2.7mu

cdiffer-0.5.3-cp27-cp27mu-manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ x86-64

File details

Details for the file cdiffer-0.5.3.tar.gz.

File metadata

  • Download URL: cdiffer-0.5.3.tar.gz
  • Upload date:
  • Size: 21.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.3.tar.gz
Algorithm Hash digest
SHA256 e0a6f2482fd070413d8b218a74041f75c4b3249be5d9023598b488cc2ffbfb22
MD5 6d1a729a681af25a2d92e988bdd57a50
BLAKE2b-256 ad80a994321d2a52fa8ac54f1cde2da267aa0c6b5b487bab8f16ddf05da8f1f5

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: cdiffer-0.5.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 663.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 507a3a209ff5484c08be71d339d62119723efd561cd30b85f13fcdd762f93007
MD5 48ee87adc50bf77b4615047ae387d944
BLAKE2b-256 ece15409a043a535ca24520ecacb6abdc954d7e1da8a802d84ba92251f655a6e

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.3-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

  • Download URL: cdiffer-0.5.3-cp39-cp39-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.3-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b063810b3ff1743e49b5336c006186bf18aede48dcaf083e66fb97536a5190ec
MD5 33fe5d5a61a6602d7e34249d5dbad322
BLAKE2b-256 e7c4cb58019c47162de2433bd3907561aa1edd4b57f52ef12eba3bf228191d54

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.3-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.5.3-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.3-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7ea8c4d892b1c8564e88ed9480acd4ae8be6f4cae5b2e4681ace4d0ad84cea76
MD5 fb9109f236c386c5353ab951a5f15283
BLAKE2b-256 951b1e6c00a95dcc5671fd3a67d8e4c9cc4cd4db63486d2a21aec366d2cc9dd9

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.3-cp39-cp39-macosx_10_16_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.5.3-cp39-cp39-macosx_10_16_x86_64.whl
  • Upload date:
  • Size: 622.0 kB
  • Tags: CPython 3.9, macOS 10.16+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.3-cp39-cp39-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 e268d70549bc2b292611892311d40a365f7bcb4f9a7a2b712090575bae3b0aee
MD5 82a2aace6478183676bdbdaeccef9e03
BLAKE2b-256 4863f8e10c580a27d2061e77f63baf383eaeaa82389728f840cd956c7e5139b9

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: cdiffer-0.5.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 663.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d7e6b443d1d356ae64dfec840936f2d6a02b05c5d88e7be84264bda01a9136bd
MD5 f7f03b44cbb712fdff49e53dcde6a43c
BLAKE2b-256 c0e37d59d51a3bf3ae2ce4a79c9bea0af7751df73158312d67e528af7a7018af

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.3-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: cdiffer-0.5.3-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.3-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ce04e0a7ea88edd2fe04656a26f14a275410bbc70e8d7969825e9168ed912f72
MD5 7f1a081754ae470cdbef868110f78c16
BLAKE2b-256 74ba08a6ed1ec00e3086ee539b20f266d11ce2a9ca1a2c8ea355ce193c834f74

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.3-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.5.3-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.3-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 dc3e45cf3dc15327a4acfb608a851c4cf3815f300128b3d1c67eaf8e298aaffe
MD5 08bd03cf9adcd67eaefe9da663715503
BLAKE2b-256 756c3c668c4d6aee3b49f4963ad7304993267fda5b7d56c73d260527c6a764bc

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.3-cp38-cp38-macosx_10_16_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.5.3-cp38-cp38-macosx_10_16_x86_64.whl
  • Upload date:
  • Size: 621.5 kB
  • Tags: CPython 3.8, macOS 10.16+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.3-cp38-cp38-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 4e9e05bcec3157674aed2b6e4524c1c10f20c8cdf2e7a1f22efb17858559d5a2
MD5 dcfe0a9b62423d32af652fb3c83bd786
BLAKE2b-256 77716bec30eb078586d99fe7c1bf07c10fe6027da83ed730c4037c09efd6c85a

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: cdiffer-0.5.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 692.7 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 70f8a5bb322480ac5bd762877917ae7f89b8f2bd91c12efff435a447c093e8c7
MD5 a3ae1ba169d38a0db0364daf78328be9
BLAKE2b-256 a965a134431cc1393e1dbac5389b6102701ca6518a8d3b6f02e40ea5a96e692a

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.3-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: cdiffer-0.5.3-cp37-cp37m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.3-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4beeb792636dc9624dd71e3eb22cb44caf1ab7df9949bdee52e8c0c4afc029a9
MD5 da5d4cd4647fcec5aec3d85b1816819f
BLAKE2b-256 a85316adf42fd1c4c81a696a89f2125f2bf25dd928633db5b81c55d27d6787c9

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.3-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.5.3-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.3-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 947d17b8b91b837a195ec453eabe42f1a0a9d0c811e9a18b105561086943e3c5
MD5 a20d96eccf0a5eb8e812eaf1ea217b7e
BLAKE2b-256 98129d488a2a3c910004efbc33270ff5e1c74f855246095ecd06011e17353b36

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.3-cp37-cp37m-macosx_10_16_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.5.3-cp37-cp37m-macosx_10_16_x86_64.whl
  • Upload date:
  • Size: 689.5 kB
  • Tags: CPython 3.7m, macOS 10.16+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.3-cp37-cp37m-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 9e47a4c1b935720361846a897f03b231f723cc10c1443ed1aff1154e87bf6660
MD5 a0f0e43ab6ef013602523debd4704b64
BLAKE2b-256 cfa03d88467308afe7e9fa13a4fdf6296388dd293c4341619d9dc22f635e21ce

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.3-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: cdiffer-0.5.3-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 692.6 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 3dbde37c06c658cb00e961e5d12f79362da2fb0d096caf3bd4067b9459e01f13
MD5 08e20d9270e5f708f1a606dfcec0ba83
BLAKE2b-256 c7a52432d9408c6baf24c2ce3efb8974458209669998d1b16410a827d7e6ee21

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.3-cp36-cp36m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: cdiffer-0.5.3-cp36-cp36m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.3-cp36-cp36m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b9d28da4771de8d0693a00c7b755b14c436c789cb2a48a1f06d207612c20a676
MD5 6cf3cd41ffcae3b7c1f23daaec3a3013
BLAKE2b-256 445c3fa6e1fb6aa1f832ae3b465b93ce0612525510065079c348e4bc0f53cc15

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.3-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.5.3-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.3-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a5b3852aa9f932a8e705d64809ea4ea2560ab9be4dc009d8d8d24d300f66dba6
MD5 8933220f000ca5f1ce724c061314b1f0
BLAKE2b-256 29c9135a392bfbff1dc365bb574cf45c4538fe1cfd76b1ac031c494c85511ad6

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.3-cp36-cp36m-macosx_10_16_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.5.3-cp36-cp36m-macosx_10_16_x86_64.whl
  • Upload date:
  • Size: 689.5 kB
  • Tags: CPython 3.6m, macOS 10.16+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.3-cp36-cp36m-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 9fda427f972faa40b70a678b892227d7cbfa1cc9466df6c5bf0cd4c0b518d720
MD5 d8ca14d50397ed1942ca13badfc5bfde
BLAKE2b-256 8873b6b733c07443d1874d3bafc3bc2e37cdf050dfb3b98e25e98e690050ffd0

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.3-cp27-cp27mu-manylinux2014_aarch64.whl.

File metadata

  • Download URL: cdiffer-0.5.3-cp27-cp27mu-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.3-cp27-cp27mu-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5e4a1c3d466c8058651b8b0f9f8ace0f3c2d93675cee5e7488d869aed9106f0a
MD5 08df81143b5b8a03ea61f0acd0758170
BLAKE2b-256 6d86979553b82d88e28aad2e53b08938cde3a792ca054472216975d68249bb91

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.3-cp27-cp27mu-manylinux2010_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.5.3-cp27-cp27mu-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.3-cp27-cp27mu-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3b18e17780955f1dfe3e044787bb34e115410c662d20be6e67181480a4f8204d
MD5 7a544d93de681a32057ebfa022ff1cb8
BLAKE2b-256 452c7aa5f1f272004d4170fea4afb628c898ddcffc3f3a30fde4bf26c00a14f7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page