Skip to main content

Edit distance, Similarity and 2 sequence differences printing

Project description

Python C Extention 2 Sequence Compare

Upload pypi.org

Edit distance, Similarity and 2 sequence differences printing.

How to Install?

pip install cdiffer

Requirement

  • python3.6 or later
  • python2.7

cdiffer.dist

Compute absolute Levenshtein distance of two strings.

Usage

dist(sequence, sequence)

Examples (it's hard to spell Levenshtein correctly):

Help on built-in function dist in module cdiffer:

dist(...)
    Compute absolute Levenshtein distance of two strings.

    dist(sequence, sequence)

    Examples (it's hard to spell Levenshtein correctly):

    >>> dist('coffee', 'cafe')
    4
    >>> dist(list('coffee'), list('cafe'))
    4
    >>> dist(tuple('coffee'), tuple('cafe'))
    4
    >>> dist(iter('coffee'), iter('cafe'))
    4
    >>> dist(range(4), range(5))
    1
    >>> dist('coffee', 'xxxxxx')
    12
    >>> dist('coffee', 'coffee')
    0

cdiffer.similar

Compute similarity of two strings.

Usage

similar(sequence, sequence)

The similarity is a number between 0 and 1, base on levenshtein edit distance.

Examples

>>> from cdiffer import similar
>>>
>>> similar('coffee', 'cafe')
0.6
>>> similar('hoge', 'bar')
0.0

cdiffer.differ

Find sequence of edit operations transforming one string to another.

Usage

differ(source_sequence, destination_sequence, diffonly=False, rep_rate=60)

Examples

>>> from cdiffer import differ
>>>
    >>> for x in differ('coffee', 'cafe'):
    ...     print(x)
    ...
    ['equal',   0, 0,   'c', 'c']
    ['delete',  1, None,'o',None]
    ['insert',  None, 1,None,'a']
    ['equal',   2, 2,   'f', 'f']
    ['delete',  3, None,'f',None]
    ['delete',  4, None,'e',None]
    ['equal',   5, 3,   'e', 'e']
    >>> for x in differ('coffee', 'cafe', diffonly=True):
    ...     print(x)
    ...
    ['delete',  1, None,'o',None]
    ['insert',  None, 1,None,'a']
    ['delete',  3, None,'f',None]
    ['delete',  4, None,'e',None]

    >>> for x in differ('coffee', 'cafe', rep_rate = 0):
    ...     print(x)
    ...
    ['equal',   0, 0,   'c', 'c']
    ['replace', 1, 1,   'o', 'a']
    ['equal',   2, 2,   'f', 'f']
    ['delete',  3, None,'f',None]
    ['delete',  4, None,'e',None]
    ['equal',   5, 3,   'e', 'e']
    >>> for x in differ('coffee', 'cafe', diffonly=True, rep_rate = 0):
    ...     print(x)
    ...
    ['replace', 1, 1,   'o', 'a']
    ['delete',  3, None,'f',None]
    ['delete',  4, None,'e',None]

cdiffer.compare

compare and prety printing 2 sequence data.

Usage

compare(source_sequence, destination_sequence, diffonly=False, rep_rate=60, condition_value=" ---> ")

Examples

>>> from cdiffer import compare
... compare('coffee', 'cafe')
[[60, 'insert', 'c', 'a', 'f', 'e'],
 [60, 'delete', 'c', 'o', 'f', 'f', 'e', 'e']]

Performance

C:\Windows\system>ipython
Python 3.7.7 (tags/v3.7.7:d7c567b08f, Mar 10 2020, 10:41:24) [MSC v.1900 64 bit (AMD64)]
Type 'copyright', 'credits' or 'license' for more information
IPython 7.21.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: from cdiffer import *

In [2]: %timeit dist('coffee', 'cafe')
   ...: %timeit dist(list('coffee'), list('cafe'))
   ...: %timeit dist(tuple('coffee'), tuple('cafe'))
   ...: %timeit dist(iter('coffee'), iter('cafe'))
   ...: %timeit dist(range(4), range(5))
   ...: %timeit dist('coffee', 'xxxxxx')
   ...: %timeit dist('coffee', 'coffee')
125 ns ± 0.534 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
677 ns ± 2.3 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
638 ns ± 3.42 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
681 ns ± 2.16 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
843 ns ± 3.66 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
125 ns ± 0.417 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
50.5 ns ± 0.338 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)

In [3]: %timeit similar('coffee', 'cafe')
   ...: %timeit similar(list('coffee'), list('cafe'))
   ...: %timeit similar(tuple('coffee'), tuple('cafe'))
   ...: %timeit similar(iter('coffee'), iter('cafe'))
   ...: %timeit similar(range(4), range(5))
   ...: %timeit similar('coffee', 'xxxxxx')
   ...: %timeit similar('coffee', 'coffee')
123 ns ± 0.301 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
680 ns ± 2.64 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
647 ns ± 1.78 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
680 ns ± 7.57 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
848 ns ± 4.19 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
130 ns ± 0.595 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
54.8 ns ± 0.691 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)

In [4]: %timeit differ('coffee', 'cafe')
    ...: %timeit differ(list('coffee'), list('cafe'))
    ...: %timeit differ(tuple('coffee'), tuple('cafe'))
    ...: %timeit differ(iter('coffee'), iter('cafe'))
    ...: %timeit differ(range(4), range(5))
    ...: %timeit differ('coffee', 'xxxxxx')
    ...: %timeit differ('coffee', 'coffee')
735 ns ± 4.18 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.36 µs ± 5.17 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.31 µs ± 5.25 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.37 µs ± 5.04 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.33 µs ± 5.32 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.07 µs ± 6.75 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
638 ns ± 3.67 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [5]: a = dict(zip('012345', 'coffee'))
    ...: b = dict(zip('0123', 'cafe'))
    ...: %timeit dist(a, b)
    ...: %timeit similar(a, b)
    ...: %timeit differ(a, b)
524 ns ± 2.6 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
539 ns ± 2.23 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.07 µs ± 1.9 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [6]: %timeit compare("coffee", "cafe")
    ...: %timeit compare([list("abc"), list("abc")], [list("abc"), list("acc"), list("xtz")], rep_rate=50)
    ...: %timeit compare(["abc", "abc"], ["abc", "acc", "xtz"], rep_rate=40)
    ...: %timeit compare(["abc", "abc"], ["abc", "acc", "xtz"], rep_rate=50)
844 ns ± 3.88 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
3.32 µs ± 6.92 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
1.16 µs ± 3.94 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.3 µs ± 31.5 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cdiffer-0.5.4.tar.gz (21.2 kB view details)

Uploaded Source

Built Distributions

cdiffer-0.5.4-cp39-cp39-win_amd64.whl (663.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

cdiffer-0.5.4-cp39-cp39-manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9

cdiffer-0.5.4-cp39-cp39-manylinux2010_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

cdiffer-0.5.4-cp39-cp39-macosx_10_16_x86_64.whl (622.0 kB view details)

Uploaded CPython 3.9 macOS 10.16+ x86-64

cdiffer-0.5.4-cp38-cp38-win_amd64.whl (663.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

cdiffer-0.5.4-cp38-cp38-manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.8

cdiffer-0.5.4-cp38-cp38-manylinux2010_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

cdiffer-0.5.4-cp38-cp38-macosx_10_16_x86_64.whl (621.5 kB view details)

Uploaded CPython 3.8 macOS 10.16+ x86-64

cdiffer-0.5.4-cp37-cp37m-win_amd64.whl (692.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

cdiffer-0.5.4-cp37-cp37m-manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m

cdiffer-0.5.4-cp37-cp37m-manylinux2010_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

cdiffer-0.5.4-cp37-cp37m-macosx_10_16_x86_64.whl (689.5 kB view details)

Uploaded CPython 3.7m macOS 10.16+ x86-64

cdiffer-0.5.4-cp36-cp36m-win_amd64.whl (692.6 kB view details)

Uploaded CPython 3.6m Windows x86-64

cdiffer-0.5.4-cp36-cp36m-manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.6m

cdiffer-0.5.4-cp36-cp36m-manylinux2010_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

cdiffer-0.5.4-cp36-cp36m-macosx_10_16_x86_64.whl (689.5 kB view details)

Uploaded CPython 3.6m macOS 10.16+ x86-64

cdiffer-0.5.4-cp27-cp27mu-manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 2.7mu

cdiffer-0.5.4-cp27-cp27mu-manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ x86-64

File details

Details for the file cdiffer-0.5.4.tar.gz.

File metadata

  • Download URL: cdiffer-0.5.4.tar.gz
  • Upload date:
  • Size: 21.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.4.tar.gz
Algorithm Hash digest
SHA256 cdd8b8c8fa4f3c0f916dfc84e21a953ce8969c5b61b10c4c9fb11bfd4e7769bc
MD5 03a59983c0342405762bab164b8d67f8
BLAKE2b-256 cae49e3aa3fd672798d6668f5fe66047dfc054e3dce128cf836282b62bd4055c

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: cdiffer-0.5.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 663.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e9bdff1247afaff1dfcc66279397bcd87e4221f63a93809a2b6cb91ee9b2e929
MD5 a634c2740f477f8b7d030f4c7050fa59
BLAKE2b-256 c323d5a8688732de05c1be35f4c84c4825aaf102d59c3da8945fb3d6bf501eb7

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.4-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

  • Download URL: cdiffer-0.5.4-cp39-cp39-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.4-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 613293697685fb095ff097fda9bda0145444fa69d92f2d794835b6fa8e861d37
MD5 96c2b369b0656d257dc90297727abddd
BLAKE2b-256 7e275455b0227744b29971fa98f4886f6d6f894e44779068571d86f3a987e5e9

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.4-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.5.4-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.4-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 cd3a3ef4a71a57df0db4230cbc35545fc097968fbe4d53bf5590d75b329ca0db
MD5 5df6b766c9696ad75f4e18b24f1adff6
BLAKE2b-256 3d09f8a19217ac3127c54f075f4dee223b9f59764fc2e6bbd2791c0802fda38d

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.4-cp39-cp39-macosx_10_16_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.5.4-cp39-cp39-macosx_10_16_x86_64.whl
  • Upload date:
  • Size: 622.0 kB
  • Tags: CPython 3.9, macOS 10.16+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.4-cp39-cp39-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 e4676273a7d3fa31265b341980c5bfbed7b31bac2a55307b99fa8b2625e4bbbe
MD5 0706887946480781f4d401a21274f604
BLAKE2b-256 447472590da4010099285c96513c4f1fd56860235f577d8a35a2c86ab71a26bf

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: cdiffer-0.5.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 663.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2e4cbed751fe945b251933b02d3e1746f010b60a73710c5876f62ab310413615
MD5 f3d4c1fb347c7c496a99487516e00e10
BLAKE2b-256 f125d178048faa40f7bb987024ffde630335a1dfcb163d93acde6174a345b6f4

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.4-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: cdiffer-0.5.4-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.4-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 055a07367c785ecc0b43cd6cdfb052e2beab65d4806e70f8e901dd04648a8ee5
MD5 032620784960a2b8daec21685aed435d
BLAKE2b-256 64742e09cb65fc835b1ac3b47caf7acecc18b1fc53a6bd776f83850d77ebb6b9

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.4-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.5.4-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.4-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 768d7c566b682cd730468ca867db9b954cccbbcf931775b4297a4e5b02e07e47
MD5 71632d462dfa8353484cf929c20393f1
BLAKE2b-256 893194c10056d18dc3fad9fec7e54aab0505ed8bcb46f927f33f4e942f4c8a43

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.4-cp38-cp38-macosx_10_16_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.5.4-cp38-cp38-macosx_10_16_x86_64.whl
  • Upload date:
  • Size: 621.5 kB
  • Tags: CPython 3.8, macOS 10.16+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.4-cp38-cp38-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 89df4b68144a55f1387f9318f51405b99cdbf082b25a68c5ee4c9507c1c5e762
MD5 7a4a9a516bd93ac591d0270daa305d0b
BLAKE2b-256 e1cca96a454d8c9e55d0ad4be59be99ffeba3d828cd301bef7474eea8ddae74b

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.4-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: cdiffer-0.5.4-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 692.7 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.4-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b8b45b7ec5115d1810d1724ae7f1d329a4ab7a22e1f208ed78ad9bdba136a4e5
MD5 15e099c3e4d34ca26cf9d70b8c2d9c5c
BLAKE2b-256 cbb92a8fc222c7bea27ba1b2e761c3b135cd0b7af14109a9a8348e2de47d27d1

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.4-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: cdiffer-0.5.4-cp37-cp37m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.4-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4ea32b5e5dcb04333150f10abee5ff01e3538ba8e1a0bf9dd90bb67c58546f61
MD5 b6f43aa774477f7cef0423ffd26632cf
BLAKE2b-256 5104902febe646545afb6517a110f2c9477a8781afa60d9bc1fc5b4e2d52e568

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.4-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.5.4-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.4-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5449729581a329ebd4c4dc8ac809fce98816712d47969b645d9fc455cf9d0923
MD5 e68f41c0db816fd1045559e667b5b444
BLAKE2b-256 e610653c24e569e066e940cba5bb6cac4846ebd638f9937ba61cb54c03c040b8

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.4-cp37-cp37m-macosx_10_16_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.5.4-cp37-cp37m-macosx_10_16_x86_64.whl
  • Upload date:
  • Size: 689.5 kB
  • Tags: CPython 3.7m, macOS 10.16+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.4-cp37-cp37m-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 b1bd5586b73e3045eb2f5a143ab6396d894964d45ef2096cdd64d8746ad7758a
MD5 0e672a9c452d547840abcf6d47169ce2
BLAKE2b-256 00a8b84e9dadfdc85b6ba937f2d308c36d08c023cf9acc3f31a55f531f487239

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.4-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: cdiffer-0.5.4-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 692.6 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.4-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 328f530fe0bb1424333b328fcfef21b9cb737ce0cd3bb9f0ffa5497bde858a61
MD5 9040bb41f2b80b30e0929b90cb45802c
BLAKE2b-256 4290d7b971c5763eea4b9169506df48873a463090356c5a874237ab40fc22fa8

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.4-cp36-cp36m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: cdiffer-0.5.4-cp36-cp36m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.4-cp36-cp36m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4fcaaaedef7f3790d5f6497891f2fc2d7c05e56c54b68820fb803fd4bf545dfa
MD5 2f0cbcec378dc49ba0b21030888b1738
BLAKE2b-256 ac8769fa714125f207a0d8e0a004dfd6bf4d8b98d86149f42d49c6c29a836318

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.4-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.5.4-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.4-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0a9b0dc2b5b49e9f888895610c4c8fe2fca87258b6b02bad03fddc3fd6ff26f8
MD5 a0b710f0627123b115153dea1747493e
BLAKE2b-256 97a7075237f2b4adc8aee8299a1beb34df9ffcf24db53cc56af174f9fd536958

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.4-cp36-cp36m-macosx_10_16_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.5.4-cp36-cp36m-macosx_10_16_x86_64.whl
  • Upload date:
  • Size: 689.5 kB
  • Tags: CPython 3.6m, macOS 10.16+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.4-cp36-cp36m-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 a72ece1f4fb645b766fff769715c922d7a2f01a65824c579d27dd94d969aa12a
MD5 0d540bc5ee1578cef23a344391b9576b
BLAKE2b-256 fd0419882d5f5710bfc078a9e36afefeb1a207c2325e6ef4c5bf2d0431e35a4b

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.4-cp27-cp27mu-manylinux2014_aarch64.whl.

File metadata

  • Download URL: cdiffer-0.5.4-cp27-cp27mu-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.4-cp27-cp27mu-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 42d76061a52f434bc0b1fa714ffa6a7253dbd43660483dcba52c22ed6dc5d09e
MD5 c5149c427a9a5a8641a66a01bea4ad5a
BLAKE2b-256 41cb3c04ff3f315a09b24e7cd42733a931b55f824e254df55c52d716404f9482

See more details on using hashes here.

File details

Details for the file cdiffer-0.5.4-cp27-cp27mu-manylinux2010_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.5.4-cp27-cp27mu-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.5.4-cp27-cp27mu-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 60ea410d8948bafb1c51df66e5596d37b9af4789d6eb72ac4f06610d92e116ba
MD5 5f67510741a3619f96ce476d4185b022
BLAKE2b-256 c0dcf6f261ec2fd25300ae15091806bb8cd8925bea74a7df3bff8160ab9a885b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page