Skip to main content

Edit distance, Similarity and 2 sequence differences printing

Project description

Python C Extention 2 Sequence Compare

Upload pypi.org

Edit distance, Similarity and 2 sequence differences printing.

How to Install?

pip install cdiffer

Requirement

  • python3.6 or later

cdiffer.dist

Compute absolute Levenshtein distance of two strings.

Usage

dist(sequence, sequence)

Examples (it's hard to spell Levenshtein correctly):

Help on built-in function dist in module cdiffer:

dist(...)
    Compute absolute Levenshtein distance of two strings.

    dist(sequence, sequence)

    Examples (it's hard to spell Levenshtein correctly):

    >>> dist('coffee', 'cafe')
    4
    >>> dist(list('coffee'), list('cafe'))
    4
    >>> dist(tuple('coffee'), tuple('cafe'))
    4
    >>> dist(iter('coffee'), iter('cafe'))
    4
    >>> dist(range(4), range(5))
    1
    >>> dist('coffee', 'xxxxxx')
    12
    >>> dist('coffee', 'coffee')
    0

cdiffer.similar

Compute similarity of two strings.

Usage

similar(sequence, sequence)

The similarity is a number between 0 and 1, base on levenshtein edit distance.

Examples

>>> from cdiffer import similar
>>>
>>> similar('coffee', 'cafe')
0.6
>>> similar('hoge', 'bar')
0.0

cdiffer.differ

Find sequence of edit operations transforming one string to another.

Usage

differ(source_sequence, destination_sequence, diffonly=False, rep_rate=60)

Examples

>>> from cdiffer import differ
>>>
    >>> for x in differ('coffee', 'cafe'):
    ...     print(x)
    ...
    ['equal',   0, 0,   'c', 'c']
    ['delete',  1, None,'o',None]
    ['insert',  None, 1,None,'a']
    ['equal',   2, 2,   'f', 'f']
    ['delete',  3, None,'f',None]
    ['delete',  4, None,'e',None]
    ['equal',   5, 3,   'e', 'e']
    >>> for x in differ('coffee', 'cafe', diffonly=True):
    ...     print(x)
    ...
    ['delete',  1, None,'o',None]
    ['insert',  None, 1,None,'a']
    ['delete',  3, None,'f',None]
    ['delete',  4, None,'e',None]

    >>> for x in differ('coffee', 'cafe', rep_rate = 0):
    ...     print(x)
    ...
    ['equal',   0, 0,   'c', 'c']
    ['replace', 1, 1,   'o', 'a']
    ['equal',   2, 2,   'f', 'f']
    ['delete',  3, None,'f',None]
    ['delete',  4, None,'e',None]
    ['equal',   5, 3,   'e', 'e']
    >>> for x in differ('coffee', 'cafe', diffonly=True, rep_rate = 0):
    ...     print(x)
    ...
    ['replace', 1, 1,   'o', 'a']
    ['delete',  3, None,'f',None]
    ['delete',  4, None,'e',None]

cdiffer.compare

compare and prety printing 2 sequence data.

Usage

compare(source_sequence, destination_sequence, diffonly=False, rep_rate=60, condition_value=" ---> ")

Examples

>>> from cdiffer import compare
... compare('coffee', 'cafe')
[[60, 'insert', 'c', 'a', 'f', 'e'],
 [60, 'delete', 'c', 'o', 'f', 'f', 'e', 'e']]

Performance

C:\Windows\system>ipython
Python 3.7.7 (tags/v3.7.7:d7c567b08f, Mar 10 2020, 10:41:24) [MSC v.1900 64 bit (AMD64)]
Type 'copyright', 'credits' or 'license' for more information
IPython 7.21.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: from cdiffer import *

In [2]: %timeit dist('coffee', 'cafe')
   ...: %timeit dist(list('coffee'), list('cafe'))
   ...: %timeit dist(tuple('coffee'), tuple('cafe'))
   ...: %timeit dist(iter('coffee'), iter('cafe'))
   ...: %timeit dist(range(4), range(5))
   ...: %timeit dist('coffee', 'xxxxxx')
   ...: %timeit dist('coffee', 'coffee')
125 ns ± 0.534 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
677 ns ± 2.3 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
638 ns ± 3.42 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
681 ns ± 2.16 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
843 ns ± 3.66 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
125 ns ± 0.417 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
50.5 ns ± 0.338 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)

In [3]: %timeit similar('coffee', 'cafe')
   ...: %timeit similar(list('coffee'), list('cafe'))
   ...: %timeit similar(tuple('coffee'), tuple('cafe'))
   ...: %timeit similar(iter('coffee'), iter('cafe'))
   ...: %timeit similar(range(4), range(5))
   ...: %timeit similar('coffee', 'xxxxxx')
   ...: %timeit similar('coffee', 'coffee')
123 ns ± 0.301 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
680 ns ± 2.64 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
647 ns ± 1.78 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
680 ns ± 7.57 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
848 ns ± 4.19 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
130 ns ± 0.595 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
54.8 ns ± 0.691 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)

In [4]: %timeit differ('coffee', 'cafe')
    ...: %timeit differ(list('coffee'), list('cafe'))
    ...: %timeit differ(tuple('coffee'), tuple('cafe'))
    ...: %timeit differ(iter('coffee'), iter('cafe'))
    ...: %timeit differ(range(4), range(5))
    ...: %timeit differ('coffee', 'xxxxxx')
    ...: %timeit differ('coffee', 'coffee')
735 ns ± 4.18 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.36 µs ± 5.17 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.31 µs ± 5.25 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.37 µs ± 5.04 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.33 µs ± 5.32 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.07 µs ± 6.75 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
638 ns ± 3.67 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [5]: a = dict(zip('012345', 'coffee'))
    ...: b = dict(zip('0123', 'cafe'))
    ...: %timeit dist(a, b)
    ...: %timeit similar(a, b)
    ...: %timeit differ(a, b)
524 ns ± 2.6 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
539 ns ± 2.23 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.07 µs ± 1.9 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [6]: %timeit compare("coffee", "cafe")
    ...: %timeit compare([list("abc"), list("abc")], [list("abc"), list("acc"), list("xtz")], rep_rate=50)
    ...: %timeit compare(["abc", "abc"], ["abc", "acc", "xtz"], rep_rate=40)
    ...: %timeit compare(["abc", "abc"], ["abc", "acc", "xtz"], rep_rate=50)
844 ns ± 3.88 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
3.32 µs ± 6.92 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
1.16 µs ± 3.94 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.3 µs ± 31.5 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cdiffer-0.6.10.tar.gz (29.7 kB view details)

Uploaded Source

Built Distributions

cdiffer-0.6.10-cp39-cp39-win_amd64.whl (729.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

cdiffer-0.6.10-cp39-cp39-manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.9

cdiffer-0.6.10-cp39-cp39-manylinux2010_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

cdiffer-0.6.10-cp39-cp39-macosx_10_16_x86_64.whl (641.9 kB view details)

Uploaded CPython 3.9 macOS 10.16+ x86-64

cdiffer-0.6.10-cp38-cp38-win_amd64.whl (728.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

cdiffer-0.6.10-cp38-cp38-manylinux2010_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

cdiffer-0.6.10-cp38-cp38-macosx_10_16_x86_64.whl (642.4 kB view details)

Uploaded CPython 3.8 macOS 10.16+ x86-64

cdiffer-0.6.10-cp37-cp37m-win_amd64.whl (736.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

cdiffer-0.6.10-cp37-cp37m-manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m

cdiffer-0.6.10-cp37-cp37m-manylinux2010_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

cdiffer-0.6.10-cp37-cp37m-macosx_10_16_x86_64.whl (703.8 kB view details)

Uploaded CPython 3.7m macOS 10.16+ x86-64

cdiffer-0.6.10-cp36-cp36m-win_amd64.whl (735.9 kB view details)

Uploaded CPython 3.6m Windows x86-64

cdiffer-0.6.10-cp36-cp36m-manylinux2010_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

cdiffer-0.6.10-cp36-cp36m-macosx_10_16_x86_64.whl (703.8 kB view details)

Uploaded CPython 3.6m macOS 10.16+ x86-64

File details

Details for the file cdiffer-0.6.10.tar.gz.

File metadata

  • Download URL: cdiffer-0.6.10.tar.gz
  • Upload date:
  • Size: 29.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.6.10.tar.gz
Algorithm Hash digest
SHA256 2638a9853757ec249b4ed959f6aeeb1fe2b41ccd3d89f205530747b5bc4d7702
MD5 f8a484f481b4daa4402eecfb9ea642ae
BLAKE2b-256 2b894211b293c53e655fd1097960695a25f2c8e34b63b48c177881d3ce170349

See more details on using hashes here.

File details

Details for the file cdiffer-0.6.10-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: cdiffer-0.6.10-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 729.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.6.10-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e82f2d70babc12caf6a63102d2733e3acc8534cf26aec6abaedd1beda7bc0712
MD5 e0661b642871c0f4fc0ac4e1acdcb859
BLAKE2b-256 e9f60780307fa530c470b3c41e64a210dc5b74e4f45b1cfc8e5531c0cd848d1b

See more details on using hashes here.

File details

Details for the file cdiffer-0.6.10-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

  • Download URL: cdiffer-0.6.10-cp39-cp39-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.6.10-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b4effe8d705fdbc3550dca402324b300055f01726b626343fd7813a661b18912
MD5 efff2d90825e8c6ff992863b8605dc3b
BLAKE2b-256 042d8b7478bbd54cf26695cb4b4dfa1f821533dd2e9eb66294a4faf0da4488e9

See more details on using hashes here.

File details

Details for the file cdiffer-0.6.10-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.6.10-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.6.10-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bb34c145bb03d43b02418caa6e7154a9871511af4f06ab401b0186043d06eabe
MD5 9e4533ca30109e1990377dcfc93a0fcc
BLAKE2b-256 6b1d35339eac038dbca20d287c0879782d8b7770e8455973e4bc77712c6ab4ac

See more details on using hashes here.

File details

Details for the file cdiffer-0.6.10-cp39-cp39-macosx_10_16_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.6.10-cp39-cp39-macosx_10_16_x86_64.whl
  • Upload date:
  • Size: 641.9 kB
  • Tags: CPython 3.9, macOS 10.16+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.6.10-cp39-cp39-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 3f3ef75d109787e37c6657d1a37420366429160853cf7afd948404d5468653eb
MD5 53f21cde1eff2fb9294c2300914a0a4a
BLAKE2b-256 cc5632f785f3111b5d598c9b837a3e2726f544d506f1baccdf9aa12583893b01

See more details on using hashes here.

File details

Details for the file cdiffer-0.6.10-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: cdiffer-0.6.10-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 728.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.6.10-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ff7800899d88ef6656c2764e5f6edcc52a4fff81896fe5849ee1624cb6d01f1e
MD5 cf6911f63bca7c86d71d7dd820e1cf7a
BLAKE2b-256 00c3d20f6640b1233d59f6c08b9cc3c05e551527ad2d739e6f20581a402ea36b

See more details on using hashes here.

File details

Details for the file cdiffer-0.6.10-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.6.10-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.6.10-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ad893349bd96f9b1049ca3930c91f790ac4c2e61dc5de196686375afb7497ae0
MD5 e3fd8a217b47f45d85746dd769a5bce1
BLAKE2b-256 fc015980f7642741701b32d966da087b2a0669022b3fd6ffe7cb2d947fa1f494

See more details on using hashes here.

File details

Details for the file cdiffer-0.6.10-cp38-cp38-macosx_10_16_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.6.10-cp38-cp38-macosx_10_16_x86_64.whl
  • Upload date:
  • Size: 642.4 kB
  • Tags: CPython 3.8, macOS 10.16+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.6.10-cp38-cp38-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 07469b7cea0439ff83d4ed657261c0d3473c347a7b736813d4d4e89dbb07f45f
MD5 cc278f949f3f34772e8b18ed1bc00740
BLAKE2b-256 c285fb7edb885226374fbe679dfa02e7f632718a381a10f237ebdf91089e3280

See more details on using hashes here.

File details

Details for the file cdiffer-0.6.10-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: cdiffer-0.6.10-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 736.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.6.10-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 493ecfb0b5d2a3bd15c4a1a258de31ce833def5975a56bf0b99f06222f6119c4
MD5 939387ad7debf8e19d82bf270e73c90a
BLAKE2b-256 e679677cff34afd3135a5f8774d18a2b29be5bfedf1b26ea7e684073da158450

See more details on using hashes here.

File details

Details for the file cdiffer-0.6.10-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: cdiffer-0.6.10-cp37-cp37m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.6.10-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4ce7e4a7624ed1206d06baff892e34a44986412150d636d2518a27474f297038
MD5 0c981b8d9a1816e5180aa800c4450774
BLAKE2b-256 cf393a111b5b7094be7456fe1838d3b15d997ce4b9271b9599abb3b758c60e6e

See more details on using hashes here.

File details

Details for the file cdiffer-0.6.10-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.6.10-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.6.10-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5c8d0c9335964fae6415439c56f936e713e9dc24129af8f83b75129545feb3fa
MD5 aa3afe5c448b7a5d17fb2c5dc0e00ba2
BLAKE2b-256 db8cad411f6b7efc187423ccf81986553685823e6cdd15e2e3f152b3edd05554

See more details on using hashes here.

File details

Details for the file cdiffer-0.6.10-cp37-cp37m-macosx_10_16_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.6.10-cp37-cp37m-macosx_10_16_x86_64.whl
  • Upload date:
  • Size: 703.8 kB
  • Tags: CPython 3.7m, macOS 10.16+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.6.10-cp37-cp37m-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 076e67fd2e867cd1526802d30f6b4a2d146b941b9fd00075d4e0cd7b086fcebc
MD5 ff182bed1a8a2a4049d1021889c4052d
BLAKE2b-256 7000c0e890e695cc3823f0784a7cbcc7ebf230713455deb8395b0555613e0773

See more details on using hashes here.

File details

Details for the file cdiffer-0.6.10-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: cdiffer-0.6.10-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 735.9 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.6.10-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 192304c24ffd9cdac096082121c5d4cf730730dcdc42c0e45de8b590b383c707
MD5 306e51ee388cab24c2fa0c1657d8ceaf
BLAKE2b-256 e5b811111de5912a8758e3ea4e8246ca5fabc3f337833cb64aecd910ebdf14a1

See more details on using hashes here.

File details

Details for the file cdiffer-0.6.10-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.6.10-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.6.10-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4356457b4deafeafe9d5a3f81e467b45577f830662cb6ad274443396d4968d27
MD5 3b30a6064c2ca635cc5a4b801834a437
BLAKE2b-256 543658e8f662f9f2c92dddbd8def7477acdcb98d0e79282366606cae1dd56c32

See more details on using hashes here.

File details

Details for the file cdiffer-0.6.10-cp36-cp36m-macosx_10_16_x86_64.whl.

File metadata

  • Download URL: cdiffer-0.6.10-cp36-cp36m-macosx_10_16_x86_64.whl
  • Upload date:
  • Size: 703.8 kB
  • Tags: CPython 3.6m, macOS 10.16+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for cdiffer-0.6.10-cp36-cp36m-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 ffa54e4ffc13135b2ee620fcedc31ae5a4e4cf46a9ac25fb6ec4d279165eb6d9
MD5 736053715fd3d98d3d2e6deb8179487d
BLAKE2b-256 0f14dac0347707b3f100440c7b23a641dc9416691402bc0bfbdb003dfbafc8c7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page