Quantifying B-Cell Clonal Diversity In Repertoire Data
Project description
Cdiversity: Quantifying B-Cell Clonal Diversity In Repertoire Data
Advances in high-throughput sequencing technologies have enabled the high-throughput characterization of B-cell receptor sequencing data. Still, the accurate identification of clonally related BCR sequences remains a difficult challenge. Importantly, different methods may lead to different clonal definitions, which in turn can affect the quantification of clonal diversity in repertoire data [1]. This library provide different tools and metrics to (i) group B-cell repertoires into clonal groups and (ii) compute diversity indices and diversity profiles from the obtained groups.
Running the analysis
First, you need to install cdiversity, or alternatively you can use the cdiversity.py
file provided in the repository:
- pip install cdiversity
Then, you can run a repertoire analysis simulation with the toy example below. For a more complete overview, you can check out Examples/Analyze_sample.py
.
Briefly, the analysis start by grouping Bcell into clones, and then use the obtained groups to compute various diversity metrics.
(I) Grouping repertoire into clones
Available methods for clonal identification are junction
, which simply group clones together only if they have the same junction. Then, there is the commonly used VJ-junction
methods, which group together BCR with the same V and J genes, as well as some user-specificed junction similarity (clone_threshold). Finally, the last method is alignfree
, which compute tf-idf embedings of the BCRs to perform a fast clustering without relying on the V and J germline genes alignements.
import pandas as pd
import cdiversity
df = pd.read_csv('Data/sample.csv', sep='\t')
clones_baseline, _ = cdiversity.identify_clonal_group(df, method='junction')
clone_VJJ, _ = cdiversity.identify_clonal_group(df, method='VJJ', clone_threshold = 0.1)
(II) Computing diversity indices
Once the clonal groups are obtained, you can compute any diversity indices or the Hill's diversity profile with a single command. Implemented indices are richness, richness_chao, Shannon_entropy, Shannon_entropy_chao, Simpson_index, dominance, eveness.
from collections import Counter
clone_dict = Counter(clone_VJJ)
diversity = cdiversity.Shannon_entropy_Chao(clone_dict)
div_profile, alpha_axis = cdiversity.diversity_profile(clone_dict)
References
[1] Pelissier, A, Luo, S, et al. "Quantifying B Cell Clonal Diversity In Repertoire Data". Submitted to Frontier in immunology (2022) [Preprint]
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file cdiversity-1.0.2.tar.gz
.
File metadata
- Download URL: cdiversity-1.0.2.tar.gz
- Upload date:
- Size: 13.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a99069107685415157d213bf7c0394d780295eefdafb4a618793dd1d657dccc3 |
|
MD5 | 5591e386bbf740fd0c7bc849d4b9b175 |
|
BLAKE2b-256 | aeec03bb493b5564d1d4738d1630ae4ab800c4aee7aff529534765ca492fa42a |