Skip to main content

A construct for the quick demo of EMR Serverless.

Project description

cdk-emrserverless-with-delta-lake

high level architecture

This constrcut builds an EMR studio, a cluster template for the EMR Studio, and an EMR Serverless application. 2 S3 buckets will be created, one is for the EMR Studio workspace and the other one is for EMR Serverless applications. Besides, the VPC and the subnets for the EMR Studio will be tagged {"Key": "for-use-with-amazon-emr-managed-policies", "Value": "true"} via a custom resource. This is necessary for the service role of EMR Studio. This construct is for analysts, data engineers, and anyone who wants to know how to process Delta Lake data with EMR serverless. cfn designer They build the construct via cdkv2 and build a serverless job within the EMR application generated by the construct via AWS CLI within few minutes. After the EMR serverless job is finished, they can then check the processed result done by the EMR serverless job on an EMR notebook through the cluster template. app history

TOC

Requirements

  1. Your current identity has the AdministratorAccess power.

  2. An IAM user named Administrator with the AdministratorAccess power.

    • This is related to the Portfolio of AWS Service Catalog created by the construct, which is required for EMR cluster tempaltes.
    • You can choose whatsoever identity you wish to associate with the Product in the Porfolio for creating an EMR cluster via cluster tempalte. Check serviceCatalogProps in the EmrServerless construct for detail, otherwise, the IAM user mentioned above will be chosen to set up with the Product.
  3. Choose proper subnet (IDs) from the default VPC, other than which you can choose your destined VPC, for the EmrServerless construct.

    • You gotta check security issue yourself if you choose an alternative VPC. In this construct, the default VPC is set and for the quickiest deployment, you select proper subnets (IDs) from you default VPC and deploy it.

Before deployment

You might want to execute the following command.

PROFILE_NAME="scott.hsieh"
# If you only have one credentials on your local machine, just ignore `--profile`, buddy.
cdk bootstrap aws://${AWS_ACCOUNT_ID}/${AWS_REGION} --profile ${PROFILE_NAME}

Minimal content for deployment

#!/usr/bin/env node
import * as cdk from 'aws-cdk-lib';
import { Construct } from 'constructs';
import { EmrServerless } from 'cdk-emrserverless-with-delta-lake';

class TypescriptStack extends cdk.Stack {
  constructor(scope: Construct, id: string, props?: cdk.StackProps) {
    super(scope, id, props);
    new EmrServerless(this, 'EmrServerless', {
      subnetIds: ['subnet-a4bfe38c', 'subnet-278b3050', 'subnet-3571a36c']
    });
  }
}

const app = new cdk.App();
new TypescriptStack(app, 'TypescriptStack', {
  stackName: 'emr-studio',
  env: {
    region: process.env.CDK_DEFAULT_REGION,
    account: process.env.CDK_DEFAULT_ACCOUNT,
  },
});

After deployment

Promise me, darling, make advantage on the CloudFormation outputs. All you need is copy-paste, copy-paste, copy-paste, life should be always that easy. cfn outputs

  1. Define the following environment variables on your current session.

    export PROFILE_NAME="${YOUR_PROFILE_NAME}"
    export JOB_ROLE_ARN="${copy-paste-thank-you}"
    export APPLICATION_ID="${copy-paste-thank-you}"
    export SERVERLESS_BUCKET_NAME="${copy-paste-thank-you}"
    export DELTA_LAKE_SCRIPT_NAME="delta-lake-demo"
    
  2. Copy partial NYC-taxi data into the EMR Serverless bucket.

    aws s3 cp s3://nyc-tlc/trip\ data/ s3://${SERVERLESS_BUCKET_NAME}/nyc-taxi/ --exclude "*" --include "yellow_tripdata_2021-*.parquet" --recursive --profile ${PROFILE_NAME}
    
  3. Create a Python script for processing Delta Lake

    touch ${DELTA_LAKE_SCRIPT_NAME}.py
    cat << EOF > ${DELTA_LAKE_SCRIPT_NAME}.py
    from pyspark.sql import SparkSession
    import uuid
    
    if __name__ == "__main__":
        """
            Delta Lake with EMR Serverless, take NTC taxi as example.
        """
        spark = SparkSession \\
            .builder \\
            .config("spark.sql.extensions", "io.delta.sql.DeltaSparkSessionExtension") \\
            .config("spark.sql.catalog.spark_catalog", "org.apache.spark.sql.delta.catalog.DeltaCatalog") \\
            .enableHiveSupport() \\
            .appName("Delta-Lake-OSS") \\
            .getOrCreate()
    
        url = "s3://${SERVERLESS_BUCKET_NAME}/emr-serverless-spark/delta-lake/output/1.2.1/%s/" % str(
            uuid.uuid4())
    
        # creates a Delta table and outputs to target S3 bucket
        spark.range(5).write.format("delta").save(url)
    
        # reads a Delta table and outputs to target S3 bucket
        spark.read.format("delta").load(url).show()
    
        # The source for the second Delta table.
        base = spark.read.parquet(
            "s3://${SERVERLESS_BUCKET_NAME}/nyc-taxi/*.parquet")
    
        # The sceond Delta table, oh ya.
        base.write.format("delta") \\
            .mode("overwrite") \\
            .save("s3://${SERVERLESS_BUCKET_NAME}/emr-serverless-spark/delta-lake/nyx-tlc-2021")
        spark.stop()
    EOF
    
  4. Upload the script and required jars into the serverless bucket

    # upload script
    aws s3 cp delta-lake-demo.py s3://${SERVERLESS_BUCKET_NAME}/scripts/${DELTA_LAKE_SCRIPT_NAME}.py --profile ${PROFILE_NAME}
    # download jars and upload them
    DELTA_VERSION="1.2.0"
    DELTA_LAKE_CORE="delta-core_2.12-${DELTA_VERSION}.jar"
    DELTA_LAKE_STORAGE="delta-storage-${DELTA_VERSION}.jar"
    curl https://repo1.maven.org/maven2/io/delta/delta-core_2.12/${DELTA_VERSION}/${DELTA_LAKE_CORE} --output ${DELTA_LAKE_CORE}
    curl https://repo1.maven.org/maven2/io/delta/delta-storage/${DELTA_VERSION}/${DELTA_LAKE_STORAGE} --output ${DELTA_LAKE_STORAGE}
    aws s3 mv ${DELTA_LAKE_CORE} s3://${SERVERLESS_BUCKET_NAME}/jars/${${DELTA_LAKE_CORE}} --profile ${PROFILE_NAME}
    aws s3 mv ${DELTA_LAKE_STORAGE} s3://${SERVERLESS_BUCKET_NAME}/jars/${DELTA_LAKE_STORAGE} --profile ${PROFILE_NAME}
    

Create an EMR Serverless app

Rememeber, you got so much information to copy and paste from the CloudFormation outputs. cfn outputs

aws emr-serverless start-job-run \
  --application-id ${APPLICATION_ID} \
  --execution-role-arn ${JOB_ROLE_ARN} \
  --name 'shy-shy-first-time' \
  --job-driver '{
        "sparkSubmit": {
            "entryPoint": "s3://'${SERVERLESS_BUCKET_NAME}'/scripts/'${DELTA_LAKE_SCRIPT_NAME}'.py",
            "sparkSubmitParameters": "--conf spark.executor.cores=1 --conf spark.executor.memory=4g --conf spark.driver.cores=1 --conf spark.driver.memory=4g --conf spark.executor.instances=1 --conf spark.jars=s3://'${SERVERLESS_BUCKET_NAME}'/jars/delta-core_2.12-1.2.0.jar,s3://'${SERVERLESS_BUCKET_NAME}'/jars/delta-storage-1.2.0.jar"
        }
    }' \
  --configuration-overrides '{
        "monitoringConfiguration": {
            "s3MonitoringConfiguration": {
                "logUri": "s3://'${SERVERLESS_BUCKET_NAME}'/serverless-log/"
	        }
	    }
	}' \
	--profile ${PROFILE_NAME}

If you execute with success, you should see similar reponse as the following:

{
    "applicationId": "00f1gvklchoqru25",
    "jobRunId": "00f1h0ipd2maem01",
    "arn": "arn:aws:emr-serverless:ap-northeast-1:630778274080:/applications/00f1gvklchoqru25/jobruns/00f1h0ipd2maem01"
}

and got a Delta Lake data under s3://${SERVERLESS_BUCKET_NAME}/emr-serverless-spark/delta-lake/nyx-tlc-2021/. Delta Lake data

Check the executing job

Access the EMR Studio via the URL from the CloudFormation outputs. It should look very similar to the following url: https://es-pilibalapilibala.emrstudio-prod.ap-northeast-1.amazonaws.com, i.e., weird string and region won't be the same as mine.

  1. Enter into the application enter into the app
  2. Enter into the executing job

Check results from an EMR notebook via cluster template

  1. Create a workspace and an EMR cluster via the cluster template on the AWS Console create workspace
  2. Check the results delivered by the EMR serverless application via an EMR notebook.

Fun facts

  1. You can assign multiple jars as a comma-separated list to the spark.jars as the Spark page says for your EMR Serverless job. The UI will complain, you still can start the job. Don't be afraid, just click it like when you were child, facing authority fearlessly. ui bug
  2. To fully delet a stack with the construct, you need to make sure there is no more workspace within the EMR Studio. Aside from that, you also need to remove the associated identity from the Service Catalog (this is a necessary resource for the cluster template).
  3. Version inconsistency on Spark history. Possibly it can be ignored yet still made me wonder why the versions are different. naughty inconsistency
  4. So far, I still haven't figured out how to make the s3a URI work. The s3 URI is fine while the serverless app will complain that it couldn't find proper credentials provider to read the s3a URI.

Future work

  1. Custom resuorce for EMR Serverless
  2. Make the construct more flexible for users
  3. Compare Databricks Runtime and EMR Serverless.

Project details


Release history Release notifications | RSS feed

This version

2.0.6

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file cdk_emrserverless_with_delta_lake-2.0.6.tar.gz.

File metadata

File hashes

Hashes for cdk_emrserverless_with_delta_lake-2.0.6.tar.gz
Algorithm Hash digest
SHA256 991a70375543ef53bd01ea3503884d5ebdc5c1944cf905595d0771bf5455c3f1
MD5 44628e78f4856932bdf9f2e3fcea9918
BLAKE2b-256 dce45df98a5e53dc1f7ff277a45d471d501e71aaf0a83e861287dade79c5dd9a

See more details on using hashes here.

File details

Details for the file cdk_emrserverless_with_delta_lake-2.0.6-py3-none-any.whl.

File metadata

File hashes

Hashes for cdk_emrserverless_with_delta_lake-2.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 e0a4bf4ffaef9ba8507087b78d1381bb379021cf70d6ee8e58eb04a5cdf2216a
MD5 42ee89e74814bc49094caf51c20ed1d5
BLAKE2b-256 b60db9377763e39733bab73fbfef3c0a7e235359858c5f67f60bbed5438d7da3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page