Skip to main content

@cdklabs/cdk-ssm-documents

Project description

SSM Document CDK

This library provides a code-based utility for implementing SSM Documents. The SSM Document objects can be used to print YAML/JSON documents and to mimic document processing locally.

This library abstracts SSM Documents at a high level, with each step as well as the document itself being objects. The properties needed to build these objects correlate to the settings that apply to them, making them simple to make. This library can be used to test your document locally before deploying it to SSM.

Since the library is written in JSII, it can be exported to other languages that support JSII (Java, Python).

This is what you'd use if you wanted to:

  1. The ability to test without deploying resources or executing an actual SSM on AWS.
  2. Reusability of steps between documents by reusing existing items
  3. Create logical higher-level groupings of reusable groups of steps ("Patterns")
  4. Simple to use interface for writing documents
  5. Import existing documents from a file (or string) and mimic them locally to test them.

Usage

Document Creation

Typescript usage (Execute AWS API Step)... The below creates the AutomationDocument in an AWS CDK stack.

import { AutomationDocument } from './automation-document';

export class HelloWorld extends Stack {
  constructor(app: Construct, id: string) {
    super(app, id);

    // Create AutomationDocument
    const myDoc = new AutomationDocument(this, "MyDoc", {
      documentFormat: DocumentFormat.JSON,
      documentName: "MyDoc",
      docInputs: [Input.ofTypeString('MyInput', { defaultValue: 'a' })],
    });

    // Define your steps...
    myDoc.addStep(new PauseStep(this, "MyPauseStep", {
      name: "MyPauseStep",
      explicitNextStep: StepRef.fromName("step1") // Optional (will default to next added step)
    }));

    myDoc.addStep(new ExecuteScriptStep(this, "MyExecuteStep", {
      name: "step1",
      language: ScriptLanguage.python(PythonVersion.VERSION_3_6, 'my_func'),
      code: ScriptCode.fromFile(resolve("test/test_file.py")),
      // OR ScriptCode.inline("def my_func(args, context):\n  return {'MyReturn': args['MyInput'] + '-suffix'}\n"),
      outputs: [{
        outputType: DataTypeEnum.STRING,
        name: "MyFuncOut",
        selector: "$.Payload.MyReturn"
      }],
      onFailure: OnFailure.abort(),
      inputPayload: { MyInput: StringVariable.of('MyInput') },
    }));
  }
}

Document JSON/YAML Export as YAML/JSON

You can deploy the above document using CDK. To print the above document object as a JSON (or YAML), do the following:

const myDocJson = myDoc.print(); // Print YAML by setting the documentFormat to YAML

Document Simulation

To run the document object in simulation mode, use the below. Simulation mode does NOT hit the SSM API, rather it mimics the execution that will happen in an SSM execution. The run happens locally and allows you to mock the calls to external services (AWS APIs for example) or to invoke those services using your local credentials.

import { Simulation } from './simulation';

const myDocJson = Simulation.ofAutomation(myDoc, {}).simulate({ MyInput: "FooBar" });

Command Documents

Below is an example of how to use the library to create Command documents. Simulation for command documents is not yet supported for all command plugins. You can use a Docker image/container as a playground for testing the Command document execution for the supported plugins.

In this example there is a complete CDK stack. Notice that the CommandDocument is saved as a field so that it can be tested from the test code.

export class HelloCdkStack extends Stack {
  readonly myCommandDoc: CommandDocument;
  constructor(scope: Construct, id: string, props?: StackProps) {
    super(scope, id, props);
    this.myCommandDoc = new CommandDocument(this, "MyCommandDoc", {
      docInputs: [Input.ofTypeString('FirstCommand', { defaultValue: 'a' })],
    })
    const runScriptStep = new RunShellScriptStep(this, "MyShellScript", {
      runCommand: [
        StringVariable.of("FirstCommand"),
        HardCodedString.of("mkdir asdf"),
      ],
    });
    this.myCommandDoc.addStep(runScriptStep);
  }
}

Below is an example of how you would run a simulation against the above CommandDocument.

Currently, bash must be available in the container or the executions against the docker will not succeed.

test('Test command doc', () => {
  const app = new cdk.App();
  const stack = new HelloCdk.HelloCdkStack(app, 'MyTestStack');
  // 1. $ docker pull amazonlinux
  // 2. $ docker run -di amazonlinux
  const simulation = Simulation.ofCommand(stack.myCommandDoc, {
    simulationPlatform: Platform.LINUX,
    environment: DockerEnvironment.fromContainer('MY_CONTAINER_ID')
  });
  simulation.simulate({FirstCommand: 'mkdir foobar'})
  // 3. The document should run the first command (create 'foobar') and create file 'asdf'
  // 4. $ docker exec -it <container name> bash
  // 5. Ensure that 'asdf' and 'foobar' were written to /tmp
});

Patterns (High-Level Constructs)

In typical CDK style, you can assemble often used groups of steps into higher level Constructs.

Consider if you typically create AutomationDocuments that start with logging the time and end with logging the total time taken. You can create a high-level Automation Document and extend that when you implement an Automation.

See the TimedDocument class to see such implementation.

Or consider the case of multiple steps that are always run together such as rebooting and instance and waiting for it to be active.

The below example is copied from the RebootInstanceAndWait class:

export class RebootInstanceAndWait extends CompositeAutomationStep {

  readonly reboot: AwsApiStep;
  readonly describe: WaitForResourceStep;

  constructor(scope: Construct, id: string, instanceId: IStringVariable) {
    super(scope, id);
    this.reboot = new AwsApiStep(this, 'RebootInstances', {
      service: AwsService.EC2,
      pascalCaseApi: 'RebootInstances',
      apiParams: { InstanceIds: [instanceId] },
      outputs: [],
    });
    this.describe = new WaitForResourceStep(this, 'DescribeInstances', {
      service: AwsService.EC2,
      pascalCaseApi: 'DescribeInstances',
      apiParams: { InstanceIds: [instanceId] },
      selector: '$.Reservations[0].Instances[0].State.Name',
      desiredValues: ['running'],
    });
  }

  addToDocument(doc: AutomationDocumentBuilder): void {
    doc.addStep(this.reboot);
    doc.addStep(this.describe);
  }
}

Now, you can use RebootInstanceAndWait as a step in a document and the child steps will be included.

Existing Documents

Do you have an existing document that you want to convert to code and/or test locally using the simulation?

Import Existing Document

Here is an example of how you can import an existing document and then simulate it locally with mocked AWS resources:

// Initialize Mocks
const sleeper = new MockSleep();
const awsInvoker = new MockAwsInvoker();
awsInvoker.whenThen(
    // when invoked with...
    {awsApi: 'listBuckets', awsParams: {}, service: AwsService.S3},
    // then response with...
    {Owner: {ID: "BUCKET_ID"}})

// ======> Create document from file <=======
const stack: Stack = new Stack();
const myAutomationDoc = StringDocument.fromFile(stack, "MyAutomationDoc", 'test/myAutomation.json', {
                                                                        // ======================
});

// Execute simulation
const simOutput = Simulation.ofAutomation(myAutomationDoc, {
  sleepHook: sleeper,
  awsInvoker: awsInvoker
}).simulate({});

// Assert simulation result
assert.deepEqual(awsInvoker.previousInvocations, [
    { awsApi: 'listBuckets', awsParams: {}, service: AwsService.S3 }]);
assert.deepEqual(sleeper.sleepMilliInvocations, [3000]);
assert.deepEqual(simOutput.outputs['simulationSteps'], ['MySleep', 'GetBucketId']);

Import Existing Steps

You can also grab a string step (or steps) and import them as CDK step constructs. This can be used to convert existing documents into CDK with each step defined separately. Doing so will allow you do modify steps and reuse them in other documents.

Here's a simple example of a sleep step copy and pasted from its original yaml:

StringStep.fromYaml(this, `
    name: sleep
    action: aws:sleep
    inputs:
      Duration: PT0M
`, {});

The above will return the CDK construct SleepStep.

Incident Manager

This library provides L2 constructs for IncidentResponse as follows:

new IncidentResponse(this, "MyIncidentResponsePlan", {
      incidentTemplate: IncidentTemplate.critical('EC2 Instance Utilization Impacted', {
        summary: 'EC2 Instance Impacted'
      }),
      actions: [
        IncidentResponseAction.ssmAutomation(myAutomationDoc, ec2CwAlarmRole, {
          parameters: {
            IncidentRecordArn: StringVariable.of('INCIDENT_RECORD_ARN'),
            InvolvedResources: StringVariable.of('INVOLVED_RESOURCES'),
            AutomationAssumeRole: HardCodedString.of(ec2CwAlarmRole.roleArn),
          }
        })
      ]
});

Notice how the myAutomationDoc is specified which is a reference to an AutomationDocument created using this library.

What is Planned?

This library currently contains AutomationDocument and CommandDocument steps. Simulation for AutomationDocuments is fully supported. Simulation for CommandDocuments is limited.

Stay tuned!

Related Projects

Security

See CONTRIBUTING for more information.

License

This project is licensed under the Apache-2.0 License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cdklabs_cdk_ssm_documents-0.0.46.tar.gz (17.7 MB view details)

Uploaded Source

Built Distribution

cdklabs.cdk_ssm_documents-0.0.46-py3-none-any.whl (17.7 MB view details)

Uploaded Python 3

File details

Details for the file cdklabs_cdk_ssm_documents-0.0.46.tar.gz.

File metadata

File hashes

Hashes for cdklabs_cdk_ssm_documents-0.0.46.tar.gz
Algorithm Hash digest
SHA256 cd7582c9e52da5103948e609454f6e9f732b26b940a25ee258711c30eed23268
MD5 e9f5514cc3ff92790288ffe54b392672
BLAKE2b-256 62088a2f8570c15ef245ee90ffecfea37ed93358cb2ee3aa36980079082f4d31

See more details on using hashes here.

File details

Details for the file cdklabs.cdk_ssm_documents-0.0.46-py3-none-any.whl.

File metadata

File hashes

Hashes for cdklabs.cdk_ssm_documents-0.0.46-py3-none-any.whl
Algorithm Hash digest
SHA256 7121dfa945a33893d3ae1d856f89e6f96c0dabba621b13cb127e9d3a396de16e
MD5 df5e472dcad5bd1f6735ebf01d11025a
BLAKE2b-256 c07a879bbb81699bd4fa79dde2380a726e946caf3666197282192284d6757866

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page