Skip to main content

A Python package for optimization on closed Riemannian manifolds

Project description

Welcome to CDOpt

A Python toolbox for optimization on closed Riemannian manifolds with support for automatic differentiation

Riemannian optimization is a powerful framework to tackle nonlinear optimization problems with structural equality constraints. By transforming these Riemannian optimization problems into the minimization of constraint dissolving functions, CDOpt allows for elegant and direct implementation various unconstrained optimization approaches for Riemannian optimization problems. CDOpt also provides user-friendly frameworks for training manifold constrained neural networks by PyTorch and Flax.

The constraint dissolving approaches have the following advantages:

  • Direct optimization & high efficiency: CDOpt is developed from the constraint dissolving approaches, which transforms Riemannian optimization problems to unconstrained ones. Therefore, we can utilize various highly efficient solvers for unconstrained optimization, and directly apply them to solve Riemannian optimization problems. Benefited from the rich expertise gained over the decades for unconstrained optimization, CDOpt is very efficient and naturally avoids the difficulties in developing specialized solvers for Riemannian optimization.
  • Plug-in neural layers: CDOpt provides various plug-in neural layers for PyTorch and \Pkg{Flax} packages. With only minor changes in the original codes, users can easily build and train the neural network while constrain the weights over various manifolds.
  • High efficiency: CDOpt has high compatibility with various numerical backends, including NumPy, SciPy, PyTorch, JAX, Flax, etc . Users can directly apply the advanced features of these packages to accelerate optimization, including the automatic differentiation, GPU/TPU supports, distributed optimization frameworks, just-in-time (JIT) compilation, etc.
  • Customized constraints: The manifold classes in CDOpt can be constructed only from the expressions of constraints. Users can easily and directly describe Riemannian optimization problems in CDOpt without any geometrical materials of the Riemannian manifold (e.g., retractions and their inverse, vector-transports, etc.).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cdopt-0.5.5.tar.gz (74.7 kB view details)

Uploaded Source

Built Distribution

cdopt-0.5.5-py3-none-any.whl (140.5 kB view details)

Uploaded Python 3

File details

Details for the file cdopt-0.5.5.tar.gz.

File metadata

  • Download URL: cdopt-0.5.5.tar.gz
  • Upload date:
  • Size: 74.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.1 pkginfo/1.4.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.26.0 CPython/3.7.0

File hashes

Hashes for cdopt-0.5.5.tar.gz
Algorithm Hash digest
SHA256 77fa646482405c16b300d96fee1e2d0e1851181e377c092ae00c2990c97e8e33
MD5 83e2f6f058f463f44de0f4804c61c096
BLAKE2b-256 d7ac430882763efc808494644cdffb2bfcac844a319cbd25cc5bd581d97c9de4

See more details on using hashes here.

File details

Details for the file cdopt-0.5.5-py3-none-any.whl.

File metadata

  • Download URL: cdopt-0.5.5-py3-none-any.whl
  • Upload date:
  • Size: 140.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.1 pkginfo/1.4.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.26.0 CPython/3.7.0

File hashes

Hashes for cdopt-0.5.5-py3-none-any.whl
Algorithm Hash digest
SHA256 6410ed04ce215c2d0463693a165ea5ac833210987ad3a92f604634f482e80061
MD5 cd2c4968541c46b640e591632b81e9ec
BLAKE2b-256 bd130d4a36f5a7f481899fb36c38583c380b7fe416246983a765afe124d7dc1b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page