Skip to main content
Help us improve Python packaging – donate today!

DTW computation

Project Description

##Dynamic Time Warping Project

[Examples](http://nbviewer.ipython.org/github/honeyext/cdtw/blob/master/examples.ipynb)

This module implements:

Distance functions:
* manhattan
* euclidean
* squared euclidean

Local constraints(step patterns, step functions):
* [well known step patterns dp1, dp2, dp3][1]
* [local constraints classified by Sakoe-Chiba][2]
impo
Global constraints(windows):
* Itakura parallelogram
* [Sakoe-chiba band, Palival adjustment window][3]

```python
import numpy as np
from cdtw import pydtw
r = np.array([1,2,3,4])
q = np.array([2,3,4,5])
d = pydtw.dtw(r,q,pydtw.Settings(step = 'p0sym', #Sakoe-Chiba symmetric step with slope constraint p = 0
window = 'palival', #type of the window
param = 2.0, #window parameter
norm = False, #normalization
compute_path = True))

d.get_dist()
#2.0
d.get_cost()
#array([[ 1., 3., 6., inf],
# [ 1., 2., 4., 7.],
# [ 2., 1., 2., 4.],
# [ inf, 2., 1., 2.]])
d.get_path()
#[(0, 0), (1, 0), (2, 1), (3, 2), (3, 3)]




```

[1]: http://cyber.felk.cvut.cz/gerstner/teaching/zbd/dtw.pdf
[2]: http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1163055&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1163055
[3]: https://maxwell.ict.griffith.edu.au/spl/publications/papers/sigpro82_kkp_dtw.pdf

Release history Release notifications

This version
History Node

0.0.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
cdtw-0.0.1.zip (181.7 kB) Copy SHA256 hash SHA256 Source None Dec 22, 2015

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page