Skip to main content

DTW computation

Project description

##Dynamic Time Warping Project

[Examples](http://nbviewer.ipython.org/github/honeyext/cdtw/blob/master/examples.ipynb)

This module implements:

Distance functions:
* manhattan
* euclidean
* squared euclidean

Local constraints(step patterns, step functions):
* [well known step patterns dp1, dp2, dp3][1]
* [local constraints classified by Sakoe-Chiba][2]
impo
Global constraints(windows):
* Itakura parallelogram
* [Sakoe-chiba band, Palival adjustment window][3]

```python
import numpy as np
from cdtw import pydtw
r = np.array([1,2,3,4])
q = np.array([2,3,4,5])
d = pydtw.dtw(r,q,pydtw.Settings(step = 'p0sym', #Sakoe-Chiba symmetric step with slope constraint p = 0
window = 'palival', #type of the window
param = 2.0, #window parameter
norm = False, #normalization
compute_path = True))

d.get_dist()
#2.0
d.get_cost()
#array([[ 1., 3., 6., inf],
# [ 1., 2., 4., 7.],
# [ 2., 1., 2., 4.],
# [ inf, 2., 1., 2.]])
d.get_path()
#[(0, 0), (1, 0), (2, 1), (3, 2), (3, 3)]




```

[1]: http://cyber.felk.cvut.cz/gerstner/teaching/zbd/dtw.pdf
[2]: http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1163055&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1163055
[3]: https://maxwell.ict.griffith.edu.au/spl/publications/papers/sigpro82_kkp_dtw.pdf

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cdtw-0.0.1.zip (181.7 kB view hashes)

Uploaded source

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page