CEEMDAN-LSTM-GradientBoosting model for state-of-the-art time series forecasting
Project description
CEEMDAN-LSTM-GradientBoosting
A state-of-the-art time series forecasting model combining CEEMDAN decomposition, LSTM neural networks, and Gradient Boosting.
Installation
You can install the package using pip:
pip install ceemdan_seglstm_gradient_boost
Usage
Here's a basic example of how to use the package:
from ceemdan_seglstm_gradient_boost import Model, Dataset_ETT_hour
# Load your data
dataset = Dataset_ETT_hour(root_path='path/to/data', flag='train', size=[12, 12, 12],
features='M', data_path='your_data.csv',
target='your_target_column', max_imfs=8)
# Initialize the model
model = Model(your_config)
# Train the model
# ... (add training code here)
# Make predictions
# ... (add prediction code here)
Dependencies
- torch
- numpy
- pandas
- matplotlib
- scikit-learn
- joblib
- PyEMD
License
This project is licensed under the MIT License.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file ceemdan_seglstm_gradient_boost-0.1.0.tar.gz
.
File metadata
- Download URL: ceemdan_seglstm_gradient_boost-0.1.0.tar.gz
- Upload date:
- Size: 1.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 75c6e2ea9d3fd2cfea2ebed774c0377f51a4b87389d148c573b5313c58d2b5cd |
|
MD5 | 87e73848613319103db31a50ec78e584 |
|
BLAKE2b-256 | a3e7c4729aa62ecc5855e3915ddfa4d3eb2a435686319f5278a3e43b69cb52a0 |
File details
Details for the file ceemdan_seglstm_gradient_boost-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: ceemdan_seglstm_gradient_boost-0.1.0-py3-none-any.whl
- Upload date:
- Size: 1.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 284e6e357a522ff3164e55fd577ea1827934ce913ea75524f2bc8ab0853c1931 |
|
MD5 | d890a741d020768f5c1467961dbc6c4f |
|
BLAKE2b-256 | 4aa39be2f8d42f27e35c3e4851e5443a64d7803a0e4e74c41106d3aa3c107464 |