Skip to main content

CEEMDAN-LSTM-GradientBoosting model for state-of-the-art time series forecasting

Project description

CEEMDAN-LSTM-GradientBoosting

A state-of-the-art time series forecasting model combining CEEMDAN decomposition, LSTM neural networks, and Gradient Boosting.

Installation

You can install the package using pip:

pip install ceemdan_seglstm_gradient_boost

Usage

Here's a basic example of how to use the package:

from ceemdan_seglstm_gradient_boost import Model, Dataset_ETT_hour

# Load your data
dataset = Dataset_ETT_hour(root_path='path/to/data', flag='train', size=[12, 12, 12], 
                           features='M', data_path='your_data.csv', 
                           target='your_target_column', max_imfs=8)

# Initialize the model
model = Model(your_config)

# Train the model
# ... (add training code here)

# Make predictions
# ... (add prediction code here)

Dependencies

  • torch
  • numpy
  • pandas
  • matplotlib
  • scikit-learn
  • joblib
  • PyEMD

License

This project is licensed under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ceemdan_seglstm_gradient_boost-0.1.0.tar.gz (1.8 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file ceemdan_seglstm_gradient_boost-0.1.0.tar.gz.

File metadata

File hashes

Hashes for ceemdan_seglstm_gradient_boost-0.1.0.tar.gz
Algorithm Hash digest
SHA256 75c6e2ea9d3fd2cfea2ebed774c0377f51a4b87389d148c573b5313c58d2b5cd
MD5 87e73848613319103db31a50ec78e584
BLAKE2b-256 a3e7c4729aa62ecc5855e3915ddfa4d3eb2a435686319f5278a3e43b69cb52a0

See more details on using hashes here.

File details

Details for the file ceemdan_seglstm_gradient_boost-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for ceemdan_seglstm_gradient_boost-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 284e6e357a522ff3164e55fd577ea1827934ce913ea75524f2bc8ab0853c1931
MD5 d890a741d020768f5c1467961dbc6c4f
BLAKE2b-256 4aa39be2f8d42f27e35c3e4851e5443a64d7803a0e4e74c41106d3aa3c107464

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page