Skip to main content

Software to rapidly and flexibly analyse Pulsar Timing Array data via factorised likelihood methods (Lamb et al. 2023)

Project description

ceffyl

PyPI version conda-forge DOI

Pronounced /ˈkɛfɨ̞l/ ('keff-ill'), meaning 'horse' in Cymraeg/Welsh 🏴󠁧󠁢󠁷󠁬󠁳󠁿🐎

A software package to rapidly and flexibly analyse pulsar timing array (PTA) data via refiting to pulsar timing free spectra.

This can be done by fitting to a free spectrum of the entire PTA or individual pulsars!

Installation

It is highly recommended that you install enterprise-pulsar first via conda-forge before installing ceffyl

To install via `pip'

conda create -n new_env python=3.10
conda activate <new_env>
pip install ceffyl
pip install --no-deps enterprise-pulsar

To install via Anaconda:

conda create -n <new_env> python enterprise-pulsar
conda activate <new_env>
conda install -c conda-forge ceffyl

Then update to the latest version using github and pip!

This is because we use enterprise as a dependency. Enterprise requires tempo2. Tempo2 is notoriously difficult to install directly... We plan to remove this dependency in a future update.

data

Download representations of PTA data to accurately fit spectral models with ceffyl!

examples

  • PTA free spectrum refit example

    • This is the fastest and most accurate refit technique. Fit any GWB spectrum that you'd like in < 5 minutes!
  • GFL Lite refit example

    • Fit GWB models quickly and accurately to different combinations of pulsars!
  • GFL refit example

    • Fit GWB and custom intrinsic red noise models to different pulsars quickly! Experimental - use with caution!

Do you have your own free spectrum posteriors that you want to work in ceffyl? Learn about making your own KDE posteriors here

Attribution

@article{lamb2023rapid,
  title={Rapid refitting techniques for Bayesian spectral characterization of the gravitational wave background using pulsar timing arrays},
  author={Lamb, William G and Taylor, Stephen R and van Haasteren, Rutger},
  journal={Physical Review D},
  volume={108},
  number={10},
  pages={103019},
  year={2023},
  publisher={APS}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ceffyl-1.40-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (500.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

ceffyl-1.40-cp312-cp312-macosx_11_0_arm64.whl (100.0 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

ceffyl-1.40-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (516.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ceffyl-1.40-cp311-cp311-macosx_11_0_arm64.whl (100.7 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

ceffyl-1.40-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (490.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ceffyl-1.40-cp310-cp310-macosx_11_0_arm64.whl (101.5 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

ceffyl-1.40-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (501.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ceffyl-1.40-cp39-cp39-macosx_11_0_arm64.whl (101.0 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

ceffyl-1.40-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (501.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

ceffyl-1.40-cp38-cp38-macosx_11_0_arm64.whl (101.5 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

File details

Details for the file ceffyl-1.40-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ceffyl-1.40-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7e4d3b44c807ce5de2297fc21a64586161854ec0467da13919857356e6b9418a
MD5 ffb836111b7092265d93745e8939a9bb
BLAKE2b-256 a3f2b38fbb2e815dc97ed74d0d223d8b7722196e4b20f0b4b0b63258bd95b9f3

See more details on using hashes here.

File details

Details for the file ceffyl-1.40-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ceffyl-1.40-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 76b17bcea4b211053e7c157a956d995ea9c9a52ac9a813869b99780e087d191a
MD5 108894bb066e047fcc4281f7d1456d3c
BLAKE2b-256 e1f446031713906806667cc29a0387d76017441094d4263886fc4c124348bad1

See more details on using hashes here.

File details

Details for the file ceffyl-1.40-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ceffyl-1.40-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0b5ac096ed987eff18e914934cd5d084ffff765f695c90bf30eda02806bd7554
MD5 0789099a9d4c7cbcee20ed2d2a5d22d5
BLAKE2b-256 255bbad2624f43eac77092823bb59e622279c109dc6030c65953b16abb623b6d

See more details on using hashes here.

File details

Details for the file ceffyl-1.40-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ceffyl-1.40-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bd3cdaec1e5d5a9be62a3c3392d927d3df71291ab1c151cef57fcb7ee306769e
MD5 ce93635f927e868e5a578aa986650688
BLAKE2b-256 e2a669c211a77924ffe3e5210bc2be3c0ba280f971802c5be205484b8ec6d440

See more details on using hashes here.

File details

Details for the file ceffyl-1.40-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ceffyl-1.40-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 23798397f67fbe17534ce92dc0789e8793e99915921c0cbf344b06dfc9cf4d02
MD5 d4fb85507c02d9e85899eb1538352c6e
BLAKE2b-256 f6a784f62577f9726c840facc8693f94cc1772927ff68f2b6937e49e15259da7

See more details on using hashes here.

File details

Details for the file ceffyl-1.40-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ceffyl-1.40-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bbd6891ecbe8c0861f979dfbae18326022dd427d67f07e83747690d7f1e8b579
MD5 2bb530738febe11c6988b8cc3748a6f8
BLAKE2b-256 4751aa600e220cbaed0b61535e2b6bbba00a4e04d9e9afe7fbc778db5aea161b

See more details on using hashes here.

File details

Details for the file ceffyl-1.40-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ceffyl-1.40-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b141af375c8138165246c6124d4876f8857803cd19727d23bce6b35381c73669
MD5 627d6343a05cb626e3455f23ad18bb83
BLAKE2b-256 5fa831507701a9d677a769f5a7189826e6762a8366cad168a61aa103891e7147

See more details on using hashes here.

File details

Details for the file ceffyl-1.40-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ceffyl-1.40-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 20b479e92b3e1bd8aa24d141e1e842909fe6fc5149297b1bfa76612e3e188eff
MD5 adae4eed2dae1588cf3aaf058a607fd3
BLAKE2b-256 9a9bee59be567945d0b0d2e83eda8a8ad03370bda44fffb349d577694afd0068

See more details on using hashes here.

File details

Details for the file ceffyl-1.40-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ceffyl-1.40-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fd421df9c5fc7354fc23a8c77910a191f7be0137cb0312ef45bef1f35086477a
MD5 7b64b070ec3116abc193395bc63cdf78
BLAKE2b-256 b3010e1a60a419ab778468d3f0f002a49e60a92ea5bf2fd00dba740bd4f019f6

See more details on using hashes here.

File details

Details for the file ceffyl-1.40-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ceffyl-1.40-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8351cd28242b092cd38564c93a8c5eee3e5c1cf6200af92a37fc115ea39725a6
MD5 1e681d50e5daddfc26634eb76656330a
BLAKE2b-256 8a29611cf8dcf10c67cdc12e088aabb26d175e82ee1251246f8a3642e68c1609

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page