Skip to main content

Model to recognize celebrities using a face matching algorithm

Project description

Celebrity Recognition PyPI version Documentation Status Anaconda-Server Badge

Model to recognize celebrities using a face matching algorithm.

Refer this for detailed documentation.

You can also read my article on medium here.

Basic working of the algorithm includes the following:

  • Face detection is done using MTCNN face detection model.

  • Face encodings are created using VGGFace model in keras.

  • Face matching is done using annoy library (spotify).

Installing dependencies

  • Run pip install -r requirements.txt to install all the dependencies (preferably in a virtual environment).

PyPI package

Installation

  • To ensure you have all the required additional packages, run pip install -r requirements.txt first.
  • To install pip package, run:
    # pip release version
    pip install celeb-detector
    # also install additional dependencies with this (if not installed via requirements.txt file)
    pip install annoy keras-vggface keras-applications
    # Directly from repo
    pip install git+https://github.com/shobhit9618/celeb_recognition.git
    
  • If you are using conda on linux or ubuntu, you can use the following commands to create and use a new environment called celeb-detector:
    conda env create shobhit9618/celeb-detector
    conda activate celeb-detector
    
    This will install all the required dependencies. To ensure you are using the latest version of the package, also run (inside the environment):
    pip install --upgrade celeb-detector
    

Using pip pakcage

  • For using my model for predictions, use the following lines of code after installation:

    import celeb_detector # on running for the first time, this will download vggface model
    img_path = 'sample_image.jpg' # this supports both local path and web url like https://sample/sample_image_url.jpg
    celeb_detector.celeb_recognition(img_path) # on running for the first time, 2 files (celeb_mapping.json and celeb_index_60.ann) will downloaded to your home directory
    

    This returns a list of dictionaries, each dictionary contains bbox coordinates, celeb name and confidence for each face detected in the image (celeb name will be unknown if no matching face detected).

  • For using your own custom model, also provide path to json and ann files as shown below:

    import celeb_detector
    img_path = 'sample_image.jpg'
    ann_path = 'sample_index.ann'
    celeb_map = 'sample_mapping.json'
    celeb_detector.celeb_recognition(img_path, ann_path, celeb_map)
    
  • For creating your own model (refer this for more details on usage) and run as follows:

    import celeb_detector
    folder_path = 'celeb_images'
    celeb_detector.create_celeb_model(folder_path)
    

Create your own celeb model

  • Create a dataset of celebs in the following directory structure:
    celeb_images/
        celeb-a/
            celeb-a_1.jpg
            celeb-a_2.jpg
            ...
        celeb-b/
            celeb-b_1.jpg
            celeb-b_1.jpg
            ...
        ...
    
  • Each folder name will be considered as the corresponding celeb name for the model (WARNING: Do not provide any special characters or spaces in the names).
  • Make sure each image has only 1 face (of the desired celebrity), if there are multiple faces, only the first detected face will be considered.
  • Provide path to the dataset folder (for example, celeb_images folder) in the create_celeb_model.py file.
  • Run create_celeb_model.py file.
  • Upon successful completion of the code, we get celeb_mapping.json (for storing indexes vs celeb names), celeb_index.ann (ann file for searching encodings) and celeb_name_encoding.pkl files (for storing encodings vs indexes for each celeb). (WARNING: You need to provide paths for storing each of these files, default is to store in the current directory)

Model predictions in jupyter

  • Provide paths to celeb_mapping.json and celeb_index.ann files in celeb_recognition.ipynb file. If you want to try my model, ignore this step.
  • Run all the cells in the celeb_recognition.ipynb file, the final cell will provide widgets for uploading images and making predictions (this will also download the necessary model files).
  • NOTE: celeb_recognition.ipynb is a standalone file and does not require any other files from the repo for running.

Model predictions in python

  • Provide paths to celeb_mapping.json and celeb_index.ann files in celeb_recognition.py and celeb_utils.py files. If you want to try my model, ignore this step.
  • Run celeb_recognition.py file, provide path to image in the file.
  • Output includes a list of the identified faces, bounding boxes and the predicted celeb name (unknown if not found).
  • It also displays the output with bounding boxes.

Sample image output

Image

Binder

You can run a binder application by clicking the following link:

Binder

You can also launch a voila binder application (which only has widgets for image upload and celeb prediction) by clicking here.

Google Colab

To open and run celeb_recognition.ipynb file in google colab, click the following link:

Open In Colab

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

celeb_detector-0.0.25.tar.gz (8.2 kB view details)

Uploaded Source

Built Distribution

celeb_detector-0.0.25-py3-none-any.whl (8.4 kB view details)

Uploaded Python 3

File details

Details for the file celeb_detector-0.0.25.tar.gz.

File metadata

  • Download URL: celeb_detector-0.0.25.tar.gz
  • Upload date:
  • Size: 8.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for celeb_detector-0.0.25.tar.gz
Algorithm Hash digest
SHA256 c9c8adfef38c3baa2983919d3a057f6e514b27575d649ba08b65e6b384811d18
MD5 b9874d5297818d918ebe9ebe7f712f9d
BLAKE2b-256 5689e5eccee6673ad7b7ed4fe78b32412831a0ab3853f04402591c58af4f8326

See more details on using hashes here.

File details

Details for the file celeb_detector-0.0.25-py3-none-any.whl.

File metadata

File hashes

Hashes for celeb_detector-0.0.25-py3-none-any.whl
Algorithm Hash digest
SHA256 bc1429351b468d26e005dcc34b3286aca951efb6abbf3f6c296169dbb37679e3
MD5 5ed46c9573f3912d1b1c9d9f76521e99
BLAKE2b-256 e028df3680e45ad24ec81471152a22cadb06ac89f26128f1384f89e4b02cd3ed

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page