Skip to main content

A Celery Beat Scheduler using Redis for persistent storage

Project description

PyPI Circle CI Travis CI

RedBeat is a Celery Beat Scheduler that stores the scheduled tasks and runtime metadata in Redis.

Why RedBeat?

  1. Dynamic live task creation and modification, without lengthy downtime

  2. Externally manage tasks from any language with Redis bindings

  3. Shared data store; Beat isn’t tied to a single drive or machine

  4. Fast startup even with a large task count

  5. Prevent accidentally running multiple Beat servers

Getting Started

Install with pip:

pip install celery-redbeat

Configure RedBeat settings in your Celery configuration file:

redbeat_redis_url = "redis://localhost:6379/1"

Then specify the scheduler when running Celery Beat:

celery beat -S redbeat.RedBeatScheduler

RedBeat uses a distributed lock to prevent multiple instances running. To disable this feature, set:

redbeat_lock_key = None

Configuration

You can add any of the following parameters to your Celery configuration (see Celery 3.x compatible configuration value names in below).

redbeat_redis_url

URL to redis server used to store the schedule, defaults to value of broker_url.

redbeat_key_prefix

A prefix for all keys created by RedBeat, defaults to 'redbeat'.

redbeat_lock_key

Key used to ensure only a single beat instance runs at a time, defaults to '<redbeat_key_prefix>:lock'.

redbeat_lock_timeout

Unless refreshed the lock will expire after this time, in seconds.

Defaults to five times of the default scheduler’s loop interval (300 seconds), so 1500 seconds (25 minutes).

See the beat_max_loop_interval Celery docs about for more information.

Celery 3.x config names

Here are the old names of the configuration values for use with Celery 3.x.

Celery 4.x

Celery 3.x

redbeat_redis_url

REDBEAT_REDIS_URL

redbeat_key_prefix

REDBEAT_KEY_PREFIX

redbeat_lock_key

REDBEAT_LOCK_KEY

redbeat_lock_timeout

REDBEAT_LOCK_TIMEOUT

Design

At its core RedBeat uses a Sorted Set to store the schedule as a priority queue. It stores task details using a hash key with the task definition and metadata.

The schedule set contains the task keys sorted by the next scheduled run time.

For each tick of Beat

  1. get list of due keys and due next tick

  2. retrieve definitions and metadata for all keys from previous step

  3. update task metadata and reschedule with next run time of task

  4. call due tasks using async_apply

  5. calculate time to sleep until start of next tick using remaining tasks

Creating Tasks

You can use Celery’s usual way to define static tasks or you can insert tasks directly into Redis. The config options is called beat_schedule, e.g.:

app.conf.beat_schedule = {
    'add-every-30-seconds': {
        'task': 'tasks.add',
        'schedule': 30.0,
        'args': (16, 16)
    },
}

On Celery 3.x the config option was called CELERYBEAT_SCHEDULE.

The easiest way to insert tasks from Python is it use RedBeatSchedulerEntry():

interval = celery.schedules.schedule(run_every=60)  # seconds
entry = RedBeatSchedulerEntry('task-name', 'tasks.some_task', interval, args=['arg1', 2])
entry.save()

Alternatively, you can insert directly into Redis by creating a new hash with a key of <redbeat_key_prefix>:task-name. It should contain a single key definition which is a JSON blob with the task details.

Interval

An interval task is defined with the JSON like:

{
    "name" : "interval example",
    "task" : "tasks.every_5_seconds",
    "schedule": {
        "__type__": "interval",
        "every" : 5, # seconds
        "relative": false, # optional
    },
    "args" : [  # optional
        "param1",
        "param2"
    ],
    "kwargs" : {  # optional
        "max_targets" : 100
    },
    "enabled" : true,  # optional
}

Crontab

An crontab task is defined with the JSON like:

{
    "name" : "crontab example",
    "task" : "tasks.daily",
    "schedule": {
        "__type__": "crontab",
        "minute" : "5", # optional, defaults to *
        "hour" : "*", # optional, defaults to *
        "day_of_week" : "monday", # optional, defaults to *
        "day_of_month" : "*/7", # optional, defaults to *
        "month_of_year" : "[1-12]", # optional, defaults to *
    },
    "args" : [  # optional
        "param1",
        "param2"
    ],
    "kwargs" : {  # optional
        "max_targets" : 100
    },
    "enabled" : true,  # optional
}

Scheduling

Assuming your redbeat_key_prefix config values is set to ‘redbeat:’ (default) you will also need to insert the new task into the schedule with:

zadd redbeat::schedule 0 new-task-name

The score is the next time the task should run formatted as a UNIX timestamp.

Metadata

Applications may also want to manipulate the task metadata to have more control over when a task runs. The meta key contains a JSON blob as follows:

{
    'last_run_at': {
        '__type__': 'datetime',
        'year': 2015,
        'month': 12,
        'day': 29,
        'hour': 16,
        'minute': 45,
        'microsecond': 231
    },
    'total_run_count'; 23
}

For instance by default `last_run_at` corresponds to when Beat dispatched the task, but depending on queue latency it might not run immediately, but the application could update the metadata with the actual run time, allowing intervals to be relative to last execution rather than last dispatch.

Sentinel support

The redis connexion can use a Redis/Sentinel cluster. The configuration syntax is inspired from celery-redis-sentinel

# celeryconfig.py
BROKER_URL = 'redis-sentinel://redis-sentinel:26379/0'
BROKER_TRANSPORT_OPTIONS = {
    'sentinels': [('192.168.1.1', 26379),
                  ('192.168.1.2', 26379),
                  ('192.168.1.3', 26379)],
    'password': '123',
    'service_name': 'master',
    'socket_timeout': 0.1,
}

CELERY_RESULT_BACKEND = 'redis-sentinel://redis-sentinel:26379/1'
CELERY_RESULT_BACKEND_TRANSPORT_OPTIONS = BROKER_TRANSPORT_OPTIONS

Some notes about the configuration:

  • note the use of redis-sentinel schema within the URL for broker and results backend.

  • hostname and port are ignored within the actual URL. Sentinel uses transport options sentinels setting to create a Sentinel() instead of configuration URL.

  • password is going to be used for Celery queue backend as well.

If other backend is configured for Celery queue use REDBEAT_REDIS_URL instead of BROKER_URL and REDBEAT_REDIS_OPTIONS instead of BROKER_TRANSPORT_OPTIONS. to avoid conflicting options. Here follows the example::

# celeryconfig.py
REDBEAT_REDIS_URL = 'redis-sentinel://redis-sentinel:26379/0'
REDBEAT_REDIS_OPTIONS = {
    'sentinels': [('192.168.1.1', 26379),
                  ('192.168.1.2', 26379),
                  ('192.168.1.3', 26379)],
    'password': '123',
    'service_name': 'master',
    'socket_timeout': 0.1,
    'retry_period': 60,
}

If retry_period is given, retry connection for retry_period seconds. If not set, retrying mechanism is not triggered. If set to -1 retry infinitely.

Development

RedBeat is available on GitHub

Once you have the source you can run the tests with the following commands:

pip install -r requirements.dev.txt
py.test tests

You can also quickly fire up a sample Beat instance with:

celery beat --config exampleconf

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

celery-redbeat-meiqia-0.11.1-2.tar.gz (19.0 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file celery-redbeat-meiqia-0.11.1-2.tar.gz.

File metadata

File hashes

Hashes for celery-redbeat-meiqia-0.11.1-2.tar.gz
Algorithm Hash digest
SHA256 9f0674da3c37447a7e40d6d17b0bda56afd55086ce58f68f018538bba121d099
MD5 5f0aafaff99b80b724bc51ef50854c90
BLAKE2b-256 29b5457c8d57f2c69a26e737f7bed8d05c0b61bdd75453f1618a29caab701032

See more details on using hashes here.

File details

Details for the file celery_redbeat_meiqia-0.11.1.post2-py2-none-any.whl.

File metadata

File hashes

Hashes for celery_redbeat_meiqia-0.11.1.post2-py2-none-any.whl
Algorithm Hash digest
SHA256 bc7da9131c3ec8d7c9a66937d82396a904fb3e8780c2521f9f60b68c929aa5cd
MD5 cf0d8b1e2fff0622fc4f9ea26312d012
BLAKE2b-256 d6e158c1fcd163ef6ba5f009f5824e0cbe4c0bf9e2df9455a36bdcb168ab817c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page