Skip to main content

Celery Periodic Tasks backed by the sqlmodel

Project description

Database backed Celery Beat Scheduler

Description

This is an sqlmodel based implementation of the celery beat scheduler. It persists periodic celery tasks in a SQLAlchemy-compatible database.

Usage

You can install this package using pip. After installation, specify the database connection string in the Celery config, using the name beat_dburi. Modified from sqlmodel-celery-beat to support pydantic v2. and optimize some functions

You can run the beat instance using:

install

pip install celery-sqlmodel-beat

tasks.py

from celery import Celery
from sqlmodel_celery_beat.schedulers import (  # pylint: disable=unused-import
    DatabaseScheduler,
)

beat_scheduler = "sqlmodel_celery_beat.schedulers:DatabaseScheduler"

beat_dburi = 'sqlite:///schedule.db'
# beat_dburi = 'mysql+mysqlconnector://root:root@127.0.0.1/celery-schedule'

config = {
    "broker_url": "redis://:127.0.0.1:6379/1",
    "result_backend": "redis://:127.0.0.1:6379/2",
    "beat_dburi": beat_dburi,
}

celery = Celery(__name__)

celery.config_from_object(config)

celery.autodiscover_tasks()

@celery.task(name='tasks.add')
def add(x, y):
    return x + y

Run Celery

celery -A tasks:celery worker -l info
celery -A tasks:celery beat -S tasks:DatabaseScheduler -l info

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

celery_sqlmodel_beat-0.1.4.tar.gz (11.7 kB view details)

Uploaded Source

Built Distribution

celery_sqlmodel_beat-0.1.4-py3-none-any.whl (13.4 kB view details)

Uploaded Python 3

File details

Details for the file celery_sqlmodel_beat-0.1.4.tar.gz.

File metadata

  • Download URL: celery_sqlmodel_beat-0.1.4.tar.gz
  • Upload date:
  • Size: 11.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.12.2 Darwin/23.2.0

File hashes

Hashes for celery_sqlmodel_beat-0.1.4.tar.gz
Algorithm Hash digest
SHA256 60afe86c54a8a30664e82c3fffacd9ad0fd2598ac47864e4cd4630b89b689b93
MD5 7e0af0388b28551c11297181d4159682
BLAKE2b-256 b694489107002cf980bcf36c182b3070c1e6e95b91a2a151bfd08c83805dbc38

See more details on using hashes here.

File details

Details for the file celery_sqlmodel_beat-0.1.4-py3-none-any.whl.

File metadata

File hashes

Hashes for celery_sqlmodel_beat-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 485c4b8f30acb0ed1d867889ab17adba9f932c6dbf4b9e27bb8b9eb8859ee760
MD5 90643fd8147688a45e1c021943ea01c0
BLAKE2b-256 b125097ec228bf3b8c0123eeb14a3894fa095196da514acbc8aa249e2edf1d19

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page