Skip to main content

GEXSCOPE Single cell analysis

Project description

CeleScope

GEXSCOPE Single Cell Analysis Tool Kit
中文文档

Requirements

  • conda
  • git
  • minimum 32GB RAM(to run STAR aligner)

Installation

  1. git clone https://github.com/zhouyiqi91/CeleScope.git
  2. add channels to ~/.condarc
channels:
  - conda-forge
  - bioconda
  - r
  - defaults
  - imperial-college-research-computing
  1. install conda packages
cd CeleScope
conda create -n celescope
conda activate celescope
conda install --file conda_pkgs.txt
  1. install celescope
pip install celescope
# if you are in china, you can use pypi mirror to accelerate downloading
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple celescope
  1. install Beta version(optional)
# if you want to use Beta version of celescope
python setup.py install

Reference genome

Homo sapiens

wget ftp://ftp.ensembl.org/pub/release-99/fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz
wget ftp://ftp.ensembl.org/pub/release-99/gtf/homo_sapiens/Homo_sapiens.GRCh38.99.gtf.gz

mkdir -p references/Homo_sapiens/Ensembl/GRCh38
gzip -c -d Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz > references/Homo_sapiens/Ensembl/GRCh38/Homo_sapiens.GRCh38.fa
gzip -c -d Homo_sapiens.GRCh38.99.gtf.gz > references/Homo_sapiens/Ensembl/GRCh38/Homo_sapiens.GRCh38.99.gtf

conda activate celescope

gtfToGenePred -genePredExt -geneNameAsName2 references/Homo_sapiens/Ensembl/GRCh38/Homo_sapiens.GRCh38.99.gtf /dev/stdout | \
    awk '{print $12"\t"$1"\t"$2"\t"$3"\t"$4"\t"$5"\t"$6"\t"$7"\t"$8"\t"$9"\t"$10}' > references/Homo_sapiens/Ensembl/GRCh38/Homo_sapiens.GRCh38.99.refFlat

STAR \
    --runMode genomeGenerate \
    --runThreadN 6 \
    --genomeDir references/Homo_sapiens/Ensembl/GRCh38 \
    --genomeFastaFiles references/Homo_sapiens/Ensembl/GRCh38/Homo_sapiens.GRCh38.fa \
    --sjdbGTFfile references/Homo_sapiens/Ensembl/GRCh38/Homo_sapiens.GRCh38.99.gtf \
    --sjdbOverhang 100

Mus musculus

wget ftp://ftp.ensembl.org/pub/release-99/fasta/mus_musculus/dna/Mus_musculus.GRCm38.dna.primary_assembly.fa.gz
wget ftp://ftp.ensembl.org/pub/release-99/gtf/mus_musculus/Mus_musculus.GRCm38.99.gtf.gz

mkdir -p references/Mus_musculus/Ensembl/GRCm38
gzip -c -d Mus_musculus.GRCm38.dna.primary_assembly.fa.gz > references/Mus_musculus/Ensembl/GRCm38/Mus_musculus.GRCm38.fa
gzip -c -d Mus_musculus.GRCm38.99.gtf.gz > references/Mus_musculus/Ensembl/GRCm38/Mus_musculus.GRCm38.99.gtf

conda activate celescope

gtfToGenePred -genePredExt -geneNameAsName2 references/Mus_musculus/Ensembl/GRCm38/Mus_musculus.GRCm38.99.gtf /dev/stdout | \
    awk '{print $12"\t"$1"\t"$2"\t"$3"\t"$4"\t"$5"\t"$6"\t"$7"\t"$8"\t"$9"\t"$10}' > references/Mus_musculus/Ensembl/GRCm38/Mus_musculus.GRCm38.99.refFlat

STAR \
    --runMode genomeGenerate \
    --runThreadN 6 \
    --genomeDir references/Mus_musculus/Ensembl/GRCm38 \
    --genomeFastaFiles references/Mus_musculus/Ensembl/GRCm38/Mus_musculus.GRCm38.fa \
    --sjdbGTFfile references/Mus_musculus/Ensembl/GRCm38/Mus_musculus.GRCm38.99.gtf \
    --sjdbOverhang 100

Usage

Single cell RNA-Seq

conda activate celescope
celescope rna run\
 --fq1 ./data/R2005212_L1_1.fq.gz\
 --fq2 ./data/R2005212_L1_2.fq.gz\
 --chemistry auto\
 --genomeDir /SGR/references/Homo_sapiens/Ensembl/GRCh38\
 --sample R2005212\
 --thread 4\

--fq1 Required. gzipped FASTQ read 1 file path
--fq2 Required. gzipped FASTQ read 2 file path
--chemistry Required. default=auto detection
--genomeDir Required. reference genome directory path
--sample Required. sample name
--thread Required. number of threads

Single Cell VDJ

conda activate celescope
celescope vdj run\   
 --fq1 {vdj fq1.gz}\
 --fq2 {vdj fq2.gz}\
 --sample {sample name}\
 --chemistry auto\
 --thread 4\
 --type {TCR or BCR}
 --match_dir {match_dir}\

--type Required. TCR or BCR
--match_dir Optional. Matched scRNA-Seq directory after running CeleScope

Single Cell Multiplexing

conda activate celescope
celescope smk run\   
 --fq1 {smk fq1.gz}\
 --fq2 {smk fq2.gz}\
 --sample {sample name}\
 --chemistry auto\
 --SMK_pattern L25C45\
 --SMK_barcode {SMK barcode fasta}\
 --SMK_linker {SMK linker fasta}\
 --match_dir {match_dir}\
 --dim 2\
 --combine_cluster {combine_cluster.tsv}

SMK_pattern Required. L25C45 means 25 bp linker + 45 bp cell barcode
abbreviations:
C: cell barcode
U: UMI
T: polyT
L: linker
--SMK_barcode Required. SMK tag fasta file
--SMK_linker Required. SMK linker fasta file
--match_dir Required. Matched scRNA-Seq directory after running CeleScope
--dim Required. SMK dimension
--combine_cluster Optional. Conbine cluster tsv file.
first column: original cluster number
second column: combined cluster number

$cat SMK_barcode.fasta
>SMK1
ATTCAAGGGCAGCCGCGTCACGATTGGATACGACTGTTGGACCGG
>SMK2
TGGATGGGATAAGTGCGTGATGGACCGAAGGGACCTCGTGGCCGG
>SMK3
CGGCTCGTGCTGCGTCGTCTCAAGTCCAGAAACTCCGTGTATCCT
>SMK4
ATTGGGAGGCTTTCGTACCGCTGCCGCCACCAGGTGATACCCGCT
>SMK5
CTCCCTGGTGTTCAATACCCGATGTGGTGGGCAGAATGTGGCTGG
>SMK6
TTACCCGCAGGAAGACGTATACCCCTCGTGCCAGGCGACCAATGC

$cat SMK_linker.fasta
>smk_linker
GTTGTCAAGATGCTACCGTTCAGAG

$cat combine_cluster.tsv 
1	1
2	2
3	2
4	2
5	3

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

celescope-1.1.7-py3-none-any.whl (1.5 MB view details)

Uploaded Python 3

File details

Details for the file celescope-1.1.7-py3-none-any.whl.

File metadata

  • Download URL: celescope-1.1.7-py3-none-any.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.6.7

File hashes

Hashes for celescope-1.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 ef9d8f15aa406f73dcc20395e28796cf690c90a61790d856ef91a9a0507529ca
MD5 9227ccda0d9b81698da399464264c178
BLAKE2b-256 4137e5b4eac4b831d4578ec7a80f8caaf5deb789c6ef416b0c9f774a30fa9d65

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page