GEARS
Project description
GEARS: Predicting transcriptional outcomes of novel multi-gene perturbations
This repository hosts the official implementation of GEARS, a method that can predict transcriptional response to both single and multi-gene perturbations using single-cell RNA-sequencing data from perturbational screens.
Installation
Install PyG, and then do pip install cell-gears
.
Core API Interface
Using the API, you can (1) reproduce the result in our paper and (2) train your own GEARS model on your perturbation screen using a few lines of code.
from gears import PertData, GEARS
# get data
pert_data = PertData('./data')
# load dataset in paper: norman, adamson, dixit.
pert_data.load(dataset = 'norman')
# specify data split
pert_data.prepare_split(split = 'simulation', seed = 1)
# get dataloader with batch size
pert_data.get_dataloader(batch_size = 32, test_batch_size = 128)
# set up and train a model
gears_model = GEARS(pert_data, device = 'cuda:8')
gears_model.model_initialize(hidden_size = 64)
gears_model.train(epochs = 20)
# save/load model
gears_model.save_model('gears')
gears_model.load_pretrained('gears')
# predict
gears_model.predict([['FOX1A', 'AHR'], ['FEV']])
gears_model.GI_predict([['FOX1A', 'AHR'], ['FEV', 'AHR']])
To use your own dataset, create a scanpy adata variable with a gene_name
column in adata.var
, and two columns condition
, cell_type
in adata.obs
. Then run:
pert_data.new_data_process(dataset_name = 'XXX', adata = adata)
# to load the processed data
pert_data.load(data_path = './data/XXX')
Demos
Name | Description |
---|---|
Dataset Tutorial | Tutorial on how to use the dataset loader and read customized data |
Model Tutorial | Tutorial on how to use the GEARS model to train a predictor |
Plot top 20 DE genes | Tutorial on how to plot the top 20 DE genes |
Uncertainty | Tutorial on how to train an uncertainty-aware GEARS model |
Cite Us
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
cell-gears-0.0.1.tar.gz
(25.1 kB
view hashes)