Skip to main content

GEARS

Project description

GEARS: Predicting transcriptional outcomes of novel multi-gene perturbations

This repository hosts the official implementation of GEARS, a method that can predict transcriptional response to both single and multi-gene perturbations using single-cell RNA-sequencing data from perturbational screens.

gears

Installation

Install PyG, and then do pip install cell-gears.

Core API Interface

Using the API, you can (1) reproduce the results in our paper and (2) train GEARS on your perturbation dataset using a few lines of code.

from gears import PertData, GEARS

# get data
pert_data = PertData('./data')
# load dataset in paper: norman, adamson, dixit.
pert_data.load(data_name = 'norman')
# specify data split
pert_data.prepare_split(split = 'simulation', seed = 1)
# get dataloader with batch size
pert_data.get_dataloader(batch_size = 32, test_batch_size = 128)

# set up and train a model
gears_model = GEARS(pert_data, device = 'cuda:8')
gears_model.model_initialize(hidden_size = 64)
gears_model.train(epochs = 20)

# save/load model
gears_model.save_model('gears')
gears_model.load_pretrained('gears')

# predict
gears_model.predict([['CBL', 'CNN1'], ['FEV']])
gears_model.GI_predict(['CBL', 'CNN1'], GI_genes_file=None)

To use your own dataset, create a scanpy adata object with a gene_name column in adata.var, and two columns condition, cell_type in adata.obs. Then run:

pert_data.new_data_process(dataset_name = 'XXX', adata = adata)
# to load the processed data
pert_data.load(data_path = './data/XXX')

Demos

Name Description
Dataset Tutorial Tutorial on how to use the dataset loader and read customized data
Model Tutorial Tutorial on how to train GEARS
Plot top 20 DE genes Tutorial on how to plot the top 20 DE genes
Uncertainty Tutorial on how to train an uncertainty-aware GEARS model

Colab

Name Description
Using Trained Model Use a model trained on Norman et al. 2019 to make predictions (Needs Colab Pro)

Cite Us

@article{roohani2023predicting,
  title={Predicting transcriptional outcomes of novel multigene perturbations with gears},
  author={Roohani, Yusuf and Huang, Kexin and Leskovec, Jure},
  journal={Nature Biotechnology},
  year={2023},
  publisher={Nature Publishing Group US New York}
}

Paper: Link

Code for reproducing figures: Link

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cell-gears-0.1.0.tar.gz (28.8 kB view hashes)

Uploaded Source

Built Distribution

cell_gears-0.1.0-py3-none-any.whl (31.0 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page