Skip to main content

This package contains cell models and the ability to apply various protocols to them.

Project description

Cell Models Package

This package is meant to contain all Christini Lab models that are implemented in Python. As of writing this, there are 3 models: O'Hara Rudy, Paci, and Kernik.

Using and Installing this Project

This Python project is written in Python Packaging format. If you want to play around with the models quickly, you can cd into cell-models/ and edit the main.py file.

If you want to install these models locally, you can run python3 setup.py from the project root. This will make the files in cell-models/ globally available.

Tutorial

Much of the code below can be found in cell-models/main.py.

Instantiate and generate a response from models

The following will plot spontaneous Kernik and Paci models and a paced O'Hara Rudy model.

# Spontaneous / Stimulated
KERNIK_PROTOCOL = protocols.SpontaneousProtocol(2000)
kernik_baseline = KernikModel()
tr_b = kernik_baseline.generate_response(KERNIK_PROTOCOL)
plt.plot(tr_b.t, tr_b.y)
plt.show()

PACI_PROTOCOL = protocols.SpontaneousProtocol(2)
paci_baseline = PaciModel()
tr_bp = paci_baseline.generate_response(PACI_PROTOCOL)
plt.plot(tr_bp.t, tr_bp.y)
plt.show()

OHARA_RUDY = protocols.PacedProtocol(model_name="OR")
or_baseline = OharaRudyModel()
tr = or_baseline.generate_response(OHARA_RUDY)
plt.plot(tr.t, tr.y)
plt.show()

Update parameters for a model

The code below will plot the baseline Kernik model and an example model with new parameter values.

KERNIK_PROTOCOL = protocols.SpontaneousProtocol(2000)
kernik_baseline = KernikModel()
kernik_updated = KernikModel(
        updated_parameters={'G_K1': 1.2, 'G_Kr': 0.8, 'G_Na':2.2})
tr_baseline = kernik_baseline.generate_response(KERNIK_PROTOCOL)
tr_updated =  kernik_updated.generate_response(KERNIK_PROTOCOL)
plt.plot(tr_baseline.t, tr_baseline.y, label="Baseline")
plt.plot(tr_updated.t, tr_updated.y, label="Updated")
plt.legend()
plt.show()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cell_models-0.0.1.tar.gz (4.0 MB view details)

Uploaded Source

Built Distributions

cell_models-0.0.1-py3.7.egg (4.1 MB view details)

Uploaded Source

cell_models-0.0.1-py3-none-any.whl (4.0 MB view details)

Uploaded Python 3

File details

Details for the file cell_models-0.0.1.tar.gz.

File metadata

  • Download URL: cell_models-0.0.1.tar.gz
  • Upload date:
  • Size: 4.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.7.7

File hashes

Hashes for cell_models-0.0.1.tar.gz
Algorithm Hash digest
SHA256 b8d4761ad7f396e54f75ca1252be48d79f8af09f8322de4f7b8839e51289e2ea
MD5 bf123bb40980bab810031fce82788286
BLAKE2b-256 606029298274523d09ba3b104765f297e2f8a936dd8ad505c3935aa3b2673e9f

See more details on using hashes here.

File details

Details for the file cell_models-0.0.1-py3.7.egg.

File metadata

  • Download URL: cell_models-0.0.1-py3.7.egg
  • Upload date:
  • Size: 4.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.7.7

File hashes

Hashes for cell_models-0.0.1-py3.7.egg
Algorithm Hash digest
SHA256 f8eff1d18851623af72dcc35422cc9baf53dc365da90d58aa4d537f011702343
MD5 9dc92de8f6d990a26d6b99af13688879
BLAKE2b-256 347bd1ccb52ef46d834e95fbb947dcf3c4efb385683c612554723a34db791f61

See more details on using hashes here.

File details

Details for the file cell_models-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: cell_models-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 4.0 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.7.7

File hashes

Hashes for cell_models-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 448ea828783fa6e3656883bd1097a3437e45412e765b6e288f23b86baca2a373
MD5 f3aaab404f331f257b10fdc3835fc2ba
BLAKE2b-256 da538fe390c6ff9692c91376c9ce508e8c4fa53e6696267293e231ff2823f6ea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page