Skip to main content

Compute single-cell cell-type expression specificity

Project description

PyPI version shields.io

CELLEX

CELLEX (CELL-type EXpression-specificity) is a tool for computing cell-type Expression Specificity (ES) profiles. It employs a "wisdom of the crowd"-approach by integrating multiple ES metrics, thus combining complementary cell-type ES profiles, to capture multiple aspects of ES and obtain improved robustness.

CELLEX_overview

Contents

Documentation

The documentation for CELLEX can be accessed in the following ways:

We are continually updating the documentation for CELLEX. If some information is missing, please submit your request or question via our issue tracker.

Quick start

This brief tutorial showcases the core features of CELLEX.

TL;DR

import numpy as np
import pandas as pd
import cellex

data = pd.read_csv("./data.csv", index_col=0)
metadata = pd.read_csv("./metadata.csv", index_col=0)

eso = cellex.ESObject(data=data, annotation=metadata, verbose=True)
eso.compute(verbose=True)
eso.results["esmu"].to_csv("mydataset.esmu.csv.gz")

Walkthrough

Setup

Option A: Install the latest release from PyPi

pip install cellex

Option B: Install the development version from this repo

Clone the development repo and install from source using pip. The development version may contain bug fixes that have not been released, as well as experimental features.

git clone https://github.com/perslab/CELLEX.git --branch develop --single-branch
cd CELLEX
pip install -e .

Import modules

import numpy as np # needed for formatting data for this tutorial
import pandas as pd # needed for formatting data for this tutorial
import cellex

Load input data and metadata

data = pd.read_csv("./data.csv", index_col=0)
metadata = pd.read_csv("./metadata.csv", index_col=0)

Data format

Data may consist of UMI counts (integer) for each gene and cell.

cell_1 ... cell_9
gene_x 0 ... 4
... ... ... ...
gene_z 3 ... 1

Shape: m genes by n cells.

Metadata format

Metadata should consist of unique cell id's and matching annotation (string).

cell_id cell_type
cell_1 type_A
... ...
cell_9 type_C

Shape: n cells by 2.

Create ESObject and compute ESmu

eso = cellex.ESObject(data=data, annotation=metadata, verbose=True)

eso.compute(verbose=True)

View Expression Specificity scores

All results are accessible via the results attribute of the ESObject.

eso.results["esmu"]

Save result(s)

Pro-tip: Using CELLEX with CELLECT

The ESmu scores may be used with CELLECT. CELLECT requires that genes are in the Human Ensembl Gene ID format. CELLEX provides a simple renaming utility for this purpose:

cellex.utils.mapping.mouse_ens_to_human_ens(eso.results["esmu"], drop_unmapped=True, verbose=True)

Save ESmu

eso.results["esmu"].to_csv("mydataset.esmu.csv.gz")

Save all or specific results

eso.save_as_csv(keys=["all"], verbose=True)

Output format

Output consist of Expression Specificity Weights (float) for each gene and cell-type. ESmu values lie in the range [0,1].

type_A ... type_C
gene_x 0.0 ... 0.9
... ... ... ...
gene_z 0.1 ... 0.2

Shape: m genes by x unique annotations. N.B. a number of genes may be removed during preprocessing.

Tutorials

Various tutorials and walkthroughs will be made available here, while the Wiki is in the making. These Jupyter Notebooks cover everything from downloading CELLEX and data to analysis and plotting.

About

Developers

  • Tobias Overlund Stannius (University of Copenhagen) @TobiasStannius
  • Pascal Nordgren Timshel (University of Copenhagen) @ptimshel

Contact

Please create an issue in this repo, if you encounter any problems using CELLEX. Alternatively, you may write an email to timshel(at)sund.ku.dk

References

If you find CELLEX useful for your research, please consider citing: Timshel (eLife, 2020): Genetic mapping of etiologic brain cell types for obesity

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cellex-1.2.2.tar.gz (7.5 MB view details)

Uploaded Source

Built Distribution

cellex-1.2.2-py3-none-any.whl (2.6 MB view details)

Uploaded Python 3

File details

Details for the file cellex-1.2.2.tar.gz.

File metadata

  • Download URL: cellex-1.2.2.tar.gz
  • Upload date:
  • Size: 7.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for cellex-1.2.2.tar.gz
Algorithm Hash digest
SHA256 3966eb164fe49b9d5c40450929084b799288d6d8bc061ece758c028087a8d6d1
MD5 1d53d5ceb7f5f3d21263a983d862f394
BLAKE2b-256 c94ff7f7c650a47237f95eb6c278cad845806009df62530210dee238370e4cd7

See more details on using hashes here.

File details

Details for the file cellex-1.2.2-py3-none-any.whl.

File metadata

  • Download URL: cellex-1.2.2-py3-none-any.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for cellex-1.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 d3f7d920c038e547b07e25e524e64f14541178a5699b5da43f6cd76d253bf3da
MD5 2463b7fcb6f38463fb503e8a81f84d1a
BLAKE2b-256 694b1a4129468ef41d85eb00de019327e673083bd0159f1e632f0063003fa261

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page