Skip to main content

Automated 3D cell detection in large microscopy images

Project description

Python Version PyPI Downloads Wheel Development Status Tests Coverage Status Code style: black Contributions Website Twitter

cellfinder-core

Standalone cellfinder cell detection algorithm

This package implements the cell detection algorithm from Tyson, Rousseau & Niedworok et al. (2021) without any dependency on data type (i.e. it can be used outside of whole-brain microscopy).

cellfinder-core supports the cellfinder software for whole-brain microscopy analysis, and the algorithm can also be implemented in napari using the cellfinder napari plugin.


Instructions

Installation

cellfinder-core supports Python 3.7, 3.8 (3.9 when supported by TensorFlow), and works across Linux, Windows, and should work on most versions of macOS (although this is not tested).

Assuming you have a Python 3.7 or 3.8 environment set up (e.g. using conda), you can install cellfinder-core with:

pip install cellfinder-core

Once you have installed napari. You can install napari either through the napari plugin installation tool, or directly from PyPI with:

pip install cellfinder-napari

N.B. To speed up cellfinder, you need CUDA & cuDNN installed. Instructions here.

Usage

Before using cellfinder-core, it may be useful to take a look at the preprint which outlines the algorithm.

The API is not yet fully documented. For an idea of what the parameters do, see the documentation for the cellfinder whole-brain microscopy image analysis command-line tool (cell candidate detection, cell candidate classification). It may also be useful to try the cellfinder napari plugin so you can adjust the parameters in a GUI.

To run the full pipeline (cell candidate detection and classification)

from cellfinder_core.main import main as cellfinder_run
import tifffile

signal_array = tifffile.imread("/path/to/signal_image.tif")
background_array = tifffile.imread("/path/to/background_image.tif")

voxel_sizes = [5, 2, 2] # in microns
detected_cells = cellfinder_run(signal_array,background_array,voxel_sizes)

The output is a list of imlib Cell objects. Each Cell has a centroid coordinate, and a type:

print(detected_cells[0])
# Cell: x: 132, y: 308, z: 10, type: 2

Cell type 2 is a "real" cell, and Cell type 1 is a "rejected" object (i.e. not classified as a cell):

from imlib.cells.cells import Cell
print(Cell.CELL)
# 2

print(Cell.NO_CELL)
# 1

Saving the results

If you want to save the detected cells for use in other BrainGlobe software (e.g. the cellfinder napari plugin), you can save in the cellfinder XML standard:

from imlib.IO.cells import save_cells
save_cells(detected_cells, "/path/to/cells.xml")

You can load these back with:

from imlib.IO.cells import get_cells
cells = get_cells("/path/to/cells.xml")

Using dask for lazy loading

cellfinder-core supports most array-like objects. Using Dask arrays allows for lazy loading of data, allowing large (e.g. TB) datasets to be processed. cellfinder-core comes with a function (based on napari-ndtiffs) to load a series of image files (e.g. a directory of 2D tiff files) as a Dask array. cellfinder-core can then be used in the same way as with a numpy array.

from cellfinder_core.main import main as cellfinder_run
from cellfinder_core.tools.IO import read_with_dask

signal_array = read_with_dask("/path/to/signal_image_directory")
background_array = read_with_dask("/path/to/background_image_directory")

voxel_sizes = [5, 2, 2] # in microns
detected_cells = cellfinder_run(signal_array,background_array,voxel_sizes)

Running the cell candidate detection and classification separately.

import tifffile
from pathlib import Path

from cellfinder_core.detect import detect
from cellfinder_core.classify import classify

signal_array = tifffile.imread("/path/to/signal_image.tif")
background_array = tifffile.imread("/path/to/background_image.tif")
voxel_sizes = [5, 2, 2] # in microns

home = Path.home()
install_path = home / ".cellfinder" # default

start_plane=0
end_plane=-1
trained_model=None
model_weights=None
model="resnet50_tv"
batch_size=32
n_free_cpus=2
network_voxel_sizes=[5, 1, 1]
soma_diameter=16
ball_xy_size=6
ball_z_size=15
ball_overlap_fraction=0.6
log_sigma_size=0.2
n_sds_above_mean_thresh=10
soma_spread_factor=1.4
max_cluster_size=100000
cube_width=50
cube_height=50
cube_depth=20
network_depth="50"

cell_candidates = detect.main(
    signal_array,
    start_plane,
    end_plane,
    voxel_sizes,
    soma_diameter,
    max_cluster_size,
    ball_xy_size,
    ball_z_size,
    ball_overlap_fraction,
    soma_spread_factor,
    n_free_cpus,
    log_sigma_size,
    n_sds_above_mean_thresh,
)

if len(cell_candidates) > 0: # Don't run if there's nothing to classify
    classified_cells = classify.main(
        cell_candidates,
        signal_array,
        background_array,
        n_free_cpus,
        voxel_sizes,
        network_voxel_sizes,
        batch_size,
        cube_height,
        cube_width,
        cube_depth,
        trained_model,
        model_weights,
        network_depth,
    )

Training the network

The training data needed are matched pairs (signal & background) of small (usually 50 x 50 x 100um) images centered on the coordinate of candidate cells. These can be generated however you like, but I recommend using the Napari plugin.

cellfinder-core comes with a 50-layer ResNet trained on ~100,000 data points from serial two-photon microscopy images of mouse brains (available here).

Training the network is likely simpler using the command-line interface or the Napari plugin, but it is possible through the Python API.

from pathlib import Path
from cellfinder_core.train.train_yml import run as run_training

# list of training yml files
yaml_files = [Path("/path/to/training_yml.yml)]

# where to save the output
output_directory = Path("/path/to/saved_training_data")

home = Path.home()
install_path = home / ".cellfinder"  # default

run_training(
    output_directory,
    yaml_files,
    install_path=install_path,
    learning_rate=0.0001,
    continue_training=True, # by default use supplied model
    test_fraction=0.1,
    batch_size=32,
    save_progress=True,
    epochs=10,
)

More info

More documentation about cellfinder and other BrainGlobe tools can be found here.

This software is at a very early stage, and was written with our data in mind. Over time we hope to support other data types/formats. If you have any questions or issues, please get in touch by email, on the forum or by raising an issue.


Illustration

Introduction

cellfinder takes a stitched, but otherwise raw dataset with at least two channels:

  • Background channel (i.e. autofluorescence)
  • Signal channel, the one with the cells to be detected:

raw Raw coronal serial two-photon mouse brain image showing labelled cells

Cell candidate detection

Classical image analysis (e.g. filters, thresholding) is used to find cell-like objects (with false positives):

raw Candidate cells (including many artefacts)

Cell candidate classification

A deep-learning network (ResNet) is used to classify cell candidates as true cells or artefacts:

raw Cassified cell candidates. Yellow - cells, Blue - artefacts


Citing cellfinder

If you find this plugin useful, and use it in your research, please cite the preprint outlining the cell detection algorithm:

Tyson, A. L., Rousseau, C. V., Niedworok, C. J., Keshavarzi, S., Tsitoura, C., Cossell, L., Strom, M. and Margrie, T. W. (2021) “A deep learning algorithm for 3D cell detection in whole mouse brain image datasets’ bioRxiv, doi.org/10.1101/2020.10.21.348771

If you use this, or any other tools in the brainglobe suite, please let us know, and we'd be happy to promote your paper/talk etc.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cellfinder-core-0.2.3.tar.gz (140.8 kB view details)

Uploaded Source

Built Distributions

cellfinder_core-0.2.3-cp38-cp38-win_amd64.whl (326.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

cellfinder_core-0.2.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

cellfinder_core-0.2.3-cp37-cp37m-win_amd64.whl (320.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

cellfinder_core-0.2.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

File details

Details for the file cellfinder-core-0.2.3.tar.gz.

File metadata

  • Download URL: cellfinder-core-0.2.3.tar.gz
  • Upload date:
  • Size: 140.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for cellfinder-core-0.2.3.tar.gz
Algorithm Hash digest
SHA256 6c121c0a745da5334831274beecf5db12a7928efdbd0f8ed24b9eed7b06eefa1
MD5 a15fba0f709f339976c9bc094f737838
BLAKE2b-256 30500d9e3917f6e205a5b0255cc237e85eaaf44baef61e9df866132b77253bbe

See more details on using hashes here.

File details

Details for the file cellfinder_core-0.2.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: cellfinder_core-0.2.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 326.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.9

File hashes

Hashes for cellfinder_core-0.2.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f02e0fa5b0768b3b03c6aad944a6f4ae475720d478e71786f70f1e3517b51fdf
MD5 ca3b41c38a479af3662218efb395fd49
BLAKE2b-256 c962c6b536e8571cb93e69e8f0a9c0157134407c154237cfe6f3d882ddf5f1b0

See more details on using hashes here.

File details

Details for the file cellfinder_core-0.2.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cellfinder_core-0.2.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ce37554bd03e6cce22528ba692217b0b0b664fe14f57d6245c358afeb4259a01
MD5 e4c238e768aa3a66b214b838d7b76ab5
BLAKE2b-256 c594f0e493a24af0e3504df0047a45eb1fb7145f133545dca36bda4ee9c5d16e

See more details on using hashes here.

File details

Details for the file cellfinder_core-0.2.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: cellfinder_core-0.2.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 320.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.9

File hashes

Hashes for cellfinder_core-0.2.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 50c2d8fd5555536a0d03c853ad004016db1237d334ac6d861e8dbaf509b0913f
MD5 f30eb03b6d463565968917e70818fba5
BLAKE2b-256 7cb66cf09b026dab2240ad689b8b56c4f12138d9750b1867c4582fb3d65059c1

See more details on using hashes here.

File details

Details for the file cellfinder_core-0.2.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cellfinder_core-0.2.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 67c8a56e306dcb9af16620128a65bc87a61674f4f0875cb5945c0b10de79d98d
MD5 d1f0898e0e50c95afe8c0289e2bc0750
BLAKE2b-256 19fcb2e174d5d54579762ddac6b18755163f5c0ab6d8eb79b51252217100f96f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page