Skip to main content

Automated 3D cell detection in large microscopy images

Project description

Python Version PyPI Downloads Wheel Development Status Tests Coverage Status Code style: black Contributions Website Twitter

cellfinder-core

Standalone cellfinder cell detection algorithm

This package implements the cell detection algorithm from Tyson, Rousseau & Niedworok et al. (2021) without any dependency on data type (i.e. it can be used outside of whole-brain microscopy).

cellfinder-core supports the cellfinder software for whole-brain microscopy analysis, and the algorithm can also be implemented in napari using the cellfinder napari plugin.


Instructions

Installation

cellfinder-core supports Python 3.7, 3.8 (3.9 when supported by TensorFlow), and works across Linux, Windows, and should work on most versions of macOS (although this is not tested).

Assuming you have a Python 3.7 or 3.8 environment set up (e.g. using conda), you can install cellfinder-core with:

pip install cellfinder-core

Once you have installed napari. You can install napari either through the napari plugin installation tool, or directly from PyPI with:

pip install cellfinder-napari

N.B. To speed up cellfinder, you need CUDA & cuDNN installed. Instructions here.

Usage

Before using cellfinder-core, it may be useful to take a look at the preprint which outlines the algorithm.

The API is not yet fully documented. For an idea of what the parameters do, see the documentation for the cellfinder whole-brain microscopy image analysis command-line tool (cell candidate detection, cell candidate classification). It may also be useful to try the cellfinder napari plugin so you can adjust the parameters in a GUI.

To run the full pipeline (cell candidate detection and classification)

from cellfinder_core.main import main as cellfinder_run
import tifffile

signal_array = tifffile.imread("/path/to/signal_image.tif")
background_array = tifffile.imread("/path/to/background_image.tif")

voxel_sizes = [5, 2, 2] # in microns
detected_cells = cellfinder_run(signal_array,background_array,voxel_sizes)

The output is a list of imlib Cell objects. Each Cell has a centroid coordinate, and a type:

print(detected_cells[0])
# Cell: x: 132, y: 308, z: 10, type: 2

Cell type 2 is a "real" cell, and Cell type 1 is a "rejected" object (i.e. not classified as a cell):

from imlib.cells.cells import Cell
print(Cell.CELL)
# 2

print(Cell.NO_CELL)
# 1

Saving the results

If you want to save the detected cells for use in other BrainGlobe software (e.g. the cellfinder napari plugin), you can save in the cellfinder XML standard:

from imlib.IO.cells import save_cells
save_cells(detected_cells, "/path/to/cells.xml")

You can load these back with:

from imlib.IO.cells import get_cells
cells = get_cells("/path/to/cells.xml")

Using dask for lazy loading

cellfinder-core supports most array-like objects. Using Dask arrays allows for lazy loading of data, allowing large (e.g. TB) datasets to be processed. cellfinder-core comes with a function (based on napari-ndtiffs) to load a series of image files (e.g. a directory of 2D tiff files) as a Dask array. cellfinder-core can then be used in the same way as with a numpy array.

from cellfinder_core.main import main as cellfinder_run
from cellfinder_core.tools.IO import read_with_dask

signal_array = read_with_dask("/path/to/signal_image_directory")
background_array = read_with_dask("/path/to/background_image_directory")

voxel_sizes = [5, 2, 2] # in microns
detected_cells = cellfinder_run(signal_array,background_array,voxel_sizes)

Running the cell candidate detection and classification separately.

import tifffile
from pathlib import Path

from cellfinder_core.detect import detect
from cellfinder_core.classify import classify

signal_array = tifffile.imread("/path/to/signal_image.tif")
background_array = tifffile.imread("/path/to/background_image.tif")
voxel_sizes = [5, 2, 2] # in microns

home = Path.home()
install_path = home / ".cellfinder" # default

start_plane=0
end_plane=-1
trained_model=None
model_weights=None
model="resnet50_tv"
batch_size=32
n_free_cpus=2
network_voxel_sizes=[5, 1, 1]
soma_diameter=16
ball_xy_size=6
ball_z_size=15
ball_overlap_fraction=0.6
log_sigma_size=0.2
n_sds_above_mean_thresh=10
soma_spread_factor=1.4
max_cluster_size=100000
cube_width=50
cube_height=50
cube_depth=20
network_depth="50"

cell_candidates = detect.main(
    signal_array,
    start_plane,
    end_plane,
    voxel_sizes,
    soma_diameter,
    max_cluster_size,
    ball_xy_size,
    ball_z_size,
    ball_overlap_fraction,
    soma_spread_factor,
    n_free_cpus,
    log_sigma_size,
    n_sds_above_mean_thresh,
)

if len(cell_candidates) > 0: # Don't run if there's nothing to classify
    classified_cells = classify.main(
        cell_candidates,
        signal_array,
        background_array,
        n_free_cpus,
        voxel_sizes,
        network_voxel_sizes,
        batch_size,
        cube_height,
        cube_width,
        cube_depth,
        trained_model,
        model_weights,
        network_depth,
    )

Training the network

The training data needed are matched pairs (signal & background) of small (usually 50 x 50 x 100um) images centered on the coordinate of candidate cells. These can be generated however you like, but I recommend using the Napari plugin.

cellfinder-core comes with a 50-layer ResNet trained on ~100,000 data points from serial two-photon microscopy images of mouse brains (available here).

Training the network is likely simpler using the command-line interface or the Napari plugin, but it is possible through the Python API.

from pathlib import Path
from cellfinder_core.train.train_yml import run as run_training

# list of training yml files
yaml_files = [Path("/path/to/training_yml.yml)]

# where to save the output
output_directory = Path("/path/to/saved_training_data")

home = Path.home()
install_path = home / ".cellfinder"  # default

run_training(
    output_directory,
    yaml_files,
    install_path=install_path,
    learning_rate=0.0001,
    continue_training=True, # by default use supplied model
    test_fraction=0.1,
    batch_size=32,
    save_progress=True,
    epochs=10,
)

More info

More documentation about cellfinder and other BrainGlobe tools can be found here.

This software is at a very early stage, and was written with our data in mind. Over time we hope to support other data types/formats. If you have any questions or issues, please get in touch by email, on the forum or by raising an issue.


Illustration

Introduction

cellfinder takes a stitched, but otherwise raw dataset with at least two channels:

  • Background channel (i.e. autofluorescence)
  • Signal channel, the one with the cells to be detected:

raw Raw coronal serial two-photon mouse brain image showing labelled cells

Cell candidate detection

Classical image analysis (e.g. filters, thresholding) is used to find cell-like objects (with false positives):

raw Candidate cells (including many artefacts)

Cell candidate classification

A deep-learning network (ResNet) is used to classify cell candidates as true cells or artefacts:

raw Cassified cell candidates. Yellow - cells, Blue - artefacts


Citing cellfinder

If you find this plugin useful, and use it in your research, please cite the preprint outlining the cell detection algorithm:

Tyson, A. L., Rousseau, C. V., Niedworok, C. J., Keshavarzi, S., Tsitoura, C., Cossell, L., Strom, M. and Margrie, T. W. (2021) “A deep learning algorithm for 3D cell detection in whole mouse brain image datasets’ bioRxiv, doi.org/10.1101/2020.10.21.348771

If you use this, or any other tools in the brainglobe suite, please let us know, and we'd be happy to promote your paper/talk etc.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cellfinder-core-0.2.3rc0.tar.gz (141.0 kB view details)

Uploaded Source

Built Distributions

cellfinder_core-0.2.3rc0-cp38-cp38-win_amd64.whl (326.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

cellfinder_core-0.2.3rc0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

cellfinder_core-0.2.3rc0-cp37-cp37m-win_amd64.whl (320.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

cellfinder_core-0.2.3rc0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

File details

Details for the file cellfinder-core-0.2.3rc0.tar.gz.

File metadata

  • Download URL: cellfinder-core-0.2.3rc0.tar.gz
  • Upload date:
  • Size: 141.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for cellfinder-core-0.2.3rc0.tar.gz
Algorithm Hash digest
SHA256 ec6f91bb223c2dd4e0364c509116f401dfde2a92d2a659315bb3d40bd8439022
MD5 9535d66bba13170657919621095d9898
BLAKE2b-256 a00c06a44e5256ac65a66e7c9a501a7d397ff3aab56b13465316b0b921645b77

See more details on using hashes here.

File details

Details for the file cellfinder_core-0.2.3rc0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: cellfinder_core-0.2.3rc0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 326.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.9

File hashes

Hashes for cellfinder_core-0.2.3rc0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d66f7c9378c685b802aaedc5007cdb80a376a1e74bef9d437e9af86b969574d4
MD5 e5ec0a68a3944817a08f376211b3f25f
BLAKE2b-256 06c112df2b7c7367e0d3eedfa47fc803d7dee7d3e03ea2297428e40afa6843c0

See more details on using hashes here.

File details

Details for the file cellfinder_core-0.2.3rc0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cellfinder_core-0.2.3rc0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7a5fcda9274eda48a21eacf10ae9d49ff79a205145bbb015bf73bd468adb6eb7
MD5 801b5d262d1bfa7cc41a0d65bd37da0a
BLAKE2b-256 bef33be448c01b7e88637db555bd674854fc99bcb844f2b8a9a64dc22cd75dfc

See more details on using hashes here.

File details

Details for the file cellfinder_core-0.2.3rc0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: cellfinder_core-0.2.3rc0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 320.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.9

File hashes

Hashes for cellfinder_core-0.2.3rc0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b5565dacbc6cb35009cc91afcb57de4de90c5430b4b6499762e364f58bf3a7d5
MD5 e259176855ab6fad54cef5e0951fcaf2
BLAKE2b-256 e879621eecd107c0a4b3bc1a93859946cc673e2aaad374b36f1e515cb1ed934f

See more details on using hashes here.

File details

Details for the file cellfinder_core-0.2.3rc0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cellfinder_core-0.2.3rc0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 92f83e26c2d1d433104feba260aa6b6c2793c553c2a4dab56e3347d59d0070a6
MD5 5424eef0fe9bdd8cec089d92ea10fd4b
BLAKE2b-256 dff3f3a76580416c6f02b75c38d184bf918142a8c1671e5fed5da7e80a3ac603

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page