Skip to main content

Automated 3D cell detection in large microscopy images

Project description

Python Version PyPI Downloads Wheel Development Status Tests Coverage Status Code style: black Imports: isort pre-commit Contributions Twitter

cellfinder-core

Standalone cellfinder cell detection algorithm

This package implements the cell detection algorithm from Tyson, Rousseau & Niedworok et al. (2021) without any dependency on data type (i.e. it can be used outside of whole-brain microscopy).

cellfinder-core supports the cellfinder software for whole-brain microscopy analysis, and the algorithm can also be implemented in napari using the cellfinder napari plugin.


Instructions

Installation

cellfinder-core supports Python >=3.7, and works across Linux, Windows, and should work on most versions of macOS (although this is not tested).

Assuming you have a Python environment set up (e.g. using conda), you can install cellfinder-core with:

pip install cellfinder-core

Once you have installed napari. You can install napari either through the napari plugin installation tool, or directly from PyPI with:

pip install cellfinder-napari

N.B. To speed up cellfinder, you need CUDA & cuDNN installed. Instructions here.

Usage

Before using cellfinder-core, it may be useful to take a look at the preprint which outlines the algorithm.

The API is not yet fully documented. For an idea of what the parameters do, see the documentation for the cellfinder whole-brain microscopy image analysis command-line tool (cell candidate detection, cell candidate classification). It may also be useful to try the cellfinder napari plugin so you can adjust the parameters in a GUI.

To run the full pipeline (cell candidate detection and classification)

from cellfinder_core.main import main as cellfinder_run
import tifffile

signal_array = tifffile.imread("/path/to/signal_image.tif")
background_array = tifffile.imread("/path/to/background_image.tif")

voxel_sizes = [5, 2, 2] # in microns
detected_cells = cellfinder_run(signal_array,background_array,voxel_sizes)

The output is a list of imlib Cell objects. Each Cell has a centroid coordinate, and a type:

print(detected_cells[0])
# Cell: x: 132, y: 308, z: 10, type: 2

Cell type 2 is a "real" cell, and Cell type 1 is a "rejected" object (i.e. not classified as a cell):

from imlib.cells.cells import Cell
print(Cell.CELL)
# 2

print(Cell.NO_CELL)
# 1

Saving the results

If you want to save the detected cells for use in other BrainGlobe software (e.g. the cellfinder napari plugin), you can save in the cellfinder XML standard:

from imlib.IO.cells import save_cells
save_cells(detected_cells, "/path/to/cells.xml")

You can load these back with:

from imlib.IO.cells import get_cells
cells = get_cells("/path/to/cells.xml")

Using dask for lazy loading

cellfinder-core supports most array-like objects. Using Dask arrays allows for lazy loading of data, allowing large (e.g. TB) datasets to be processed. cellfinder-core comes with a function (based on napari-ndtiffs) to load a series of image files (e.g. a directory of 2D tiff files) as a Dask array. cellfinder-core can then be used in the same way as with a numpy array.

from cellfinder_core.main import main as cellfinder_run
from cellfinder_core.tools.IO import read_with_dask

signal_array = read_with_dask("/path/to/signal_image_directory")
background_array = read_with_dask("/path/to/background_image_directory")

voxel_sizes = [5, 2, 2] # in microns
detected_cells = cellfinder_run(signal_array,background_array,voxel_sizes)

Running the cell candidate detection and classification separately.

import tifffile
from pathlib import Path

from cellfinder_core.detect import detect
from cellfinder_core.classify import classify
from cellfinder_core.tools.prep import prep_classification

signal_array = tifffile.imread("/path/to/signal_image.tif")
background_array = tifffile.imread("/path/to/background_image.tif")
voxel_sizes = [5, 2, 2] # in microns

home = Path.home()
install_path = home / ".cellfinder" # default

start_plane=0
end_plane=-1
trained_model=None
model_weights=None
model="resnet50_tv"
batch_size=32
n_free_cpus=2
network_voxel_sizes=[5, 1, 1]
soma_diameter=16
ball_xy_size=6
ball_z_size=15
ball_overlap_fraction=0.6
log_sigma_size=0.2
n_sds_above_mean_thresh=10
soma_spread_factor=1.4
max_cluster_size=100000
cube_width=50
cube_height=50
cube_depth=20
network_depth="50"

model_weights = prep_classification(
    trained_model, model_weights, install_path, model, n_free_cpus
)

cell_candidates = detect.main(
    signal_array,
    start_plane,
    end_plane,
    voxel_sizes,
    soma_diameter,
    max_cluster_size,
    ball_xy_size,
    ball_z_size,
    ball_overlap_fraction,
    soma_spread_factor,
    n_free_cpus,
    log_sigma_size,
    n_sds_above_mean_thresh,
)

if len(cell_candidates) > 0: # Don't run if there's nothing to classify
    classified_cells = classify.main(
        cell_candidates,
        signal_array,
        background_array,
        n_free_cpus,
        voxel_sizes,
        network_voxel_sizes,
        batch_size,
        cube_height,
        cube_width,
        cube_depth,
        trained_model,
        model_weights,
        network_depth,
    )

Training the network

The training data needed are matched pairs (signal & background) of small (usually 50 x 50 x 100um) images centered on the coordinate of candidate cells. These can be generated however you like, but I recommend using the Napari plugin.

cellfinder-core comes with a 50-layer ResNet trained on ~100,000 data points from serial two-photon microscopy images of mouse brains (available here).

Training the network is likely simpler using the command-line interface or the Napari plugin, but it is possible through the Python API.

from pathlib import Path
from cellfinder_core.train.train_yml import run as run_training

# list of training yml files
yaml_files = [Path("/path/to/training_yml.yml)]

# where to save the output
output_directory = Path("/path/to/saved_training_data")

home = Path.home()
install_path = home / ".cellfinder"  # default

run_training(
    output_directory,
    yaml_files,
    install_path=install_path,
    learning_rate=0.0001,
    continue_training=True, # by default use supplied model
    test_fraction=0.1,
    batch_size=32,
    save_progress=True,
    epochs=10,
)

More info

More documentation about cellfinder and other BrainGlobe tools can be found here.

This software is at a very early stage, and was written with our data in mind. Over time we hope to support other data types/formats. If you have any questions or issues, please get in touch on the forum or by raising an issue.


Illustration

Introduction

cellfinder takes a stitched, but otherwise raw dataset with at least two channels:

  • Background channel (i.e. autofluorescence)
  • Signal channel, the one with the cells to be detected:

raw Raw coronal serial two-photon mouse brain image showing labelled cells

Cell candidate detection

Classical image analysis (e.g. filters, thresholding) is used to find cell-like objects (with false positives):

raw Candidate cells (including many artefacts)

Cell candidate classification

A deep-learning network (ResNet) is used to classify cell candidates as true cells or artefacts:

raw Cassified cell candidates. Yellow - cells, Blue - artefacts


Citing cellfinder

If you find this plugin useful, and use it in your research, please cite the preprint outlining the cell detection algorithm:

Tyson, A. L., Rousseau, C. V., Niedworok, C. J., Keshavarzi, S., Tsitoura, C., Cossell, L., Strom, M. and Margrie, T. W. (2021) “A deep learning algorithm for 3D cell detection in whole mouse brain image datasets’ PLOS Computational Biology, 17(5), e1009074 https://doi.org/10.1371/journal.pcbi.1009074

If you use this, or any other tools in the brainglobe suite, please let us know, and we'd be happy to promote your paper/talk etc.


The BrainGlobe project is generously supported by the Sainsbury Wellcome Centre and the Institute of Neuroscience, Technical University of Munich, with funding from Wellcome, the Gatsby Charitable Foundation and the Munich Cluster for Systems Neurology - Synergy.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cellfinder-core-0.3.0rc9.tar.gz (437.3 kB view details)

Uploaded Source

Built Distributions

cellfinder_core-0.3.0rc9-cp310-cp310-win_amd64.whl (691.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

cellfinder_core-0.3.0rc9-cp310-cp310-win32.whl (661.8 kB view details)

Uploaded CPython 3.10 Windows x86

cellfinder_core-0.3.0rc9-cp310-cp310-musllinux_1_1_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

cellfinder_core-0.3.0rc9-cp310-cp310-musllinux_1_1_i686.whl (2.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

cellfinder_core-0.3.0rc9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

cellfinder_core-0.3.0rc9-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

cellfinder_core-0.3.0rc9-cp310-cp310-macosx_10_9_x86_64.whl (748.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

cellfinder_core-0.3.0rc9-cp39-cp39-win_amd64.whl (691.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

cellfinder_core-0.3.0rc9-cp39-cp39-win32.whl (661.8 kB view details)

Uploaded CPython 3.9 Windows x86

cellfinder_core-0.3.0rc9-cp39-cp39-musllinux_1_1_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

cellfinder_core-0.3.0rc9-cp39-cp39-musllinux_1_1_i686.whl (2.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

cellfinder_core-0.3.0rc9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

cellfinder_core-0.3.0rc9-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

cellfinder_core-0.3.0rc9-cp39-cp39-macosx_10_9_x86_64.whl (748.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

cellfinder_core-0.3.0rc9-cp38-cp38-win_amd64.whl (691.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

cellfinder_core-0.3.0rc9-cp38-cp38-win32.whl (259.5 kB view details)

Uploaded CPython 3.8 Windows x86

cellfinder_core-0.3.0rc9-cp38-cp38-musllinux_1_1_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

cellfinder_core-0.3.0rc9-cp38-cp38-musllinux_1_1_i686.whl (2.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

cellfinder_core-0.3.0rc9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

cellfinder_core-0.3.0rc9-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

cellfinder_core-0.3.0rc9-cp38-cp38-macosx_10_9_x86_64.whl (741.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file cellfinder-core-0.3.0rc9.tar.gz.

File metadata

  • Download URL: cellfinder-core-0.3.0rc9.tar.gz
  • Upload date:
  • Size: 437.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for cellfinder-core-0.3.0rc9.tar.gz
Algorithm Hash digest
SHA256 1b47cde03a426111aade6843036f3bd817c2d083b7d384ae07d951bdfe329257
MD5 98d6f6f3d337a81b61c74f1e6a769135
BLAKE2b-256 d1f8f18a61412827f14b3f75ab2cb900a37c3163d6e36b40ffeb51423f6df098

See more details on using hashes here.

File details

Details for the file cellfinder_core-0.3.0rc9-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for cellfinder_core-0.3.0rc9-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ec296b91cc72711fd9c0f8b87cd27b891ff6dbc19c94aed85aff438f250fc6a1
MD5 3e446b3ec7bc0ee2bb9c315127241868
BLAKE2b-256 be56b57b7ddf7aa0bbce44b0b528b2d67f132069e7345799cc04bf307bbaf37c

See more details on using hashes here.

File details

Details for the file cellfinder_core-0.3.0rc9-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for cellfinder_core-0.3.0rc9-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 949b46835c6cc07073a13636c60380ec7851ce9dc61b2279de6360bf1a7c374e
MD5 e6fe3e44eddd1db65319311c1f8b1c7b
BLAKE2b-256 ea581719adf0959a93ae497a4c4557ddee679df4d6040c79fd005b993411e81a

See more details on using hashes here.

File details

Details for the file cellfinder_core-0.3.0rc9-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for cellfinder_core-0.3.0rc9-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7905efec7cdcfc12d9e48541828c8f8bbd0f502885ab45c47eec9e31b28dcb63
MD5 c65598a60af7a672e11a6e5edcfabbc7
BLAKE2b-256 628e10329fe2dc39335ba5f36af7f78638b34a21f3c2ab343fef5d61d683dc4d

See more details on using hashes here.

File details

Details for the file cellfinder_core-0.3.0rc9-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for cellfinder_core-0.3.0rc9-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e707ad61a594ed67d3fe68cebab83523616c89515b9f1f7909b83fc0b29a65ec
MD5 1c05399cd089522fa6a80bf825d4e359
BLAKE2b-256 ee98df5c212446ad49aa710bac7c483abf00eab57850b60f9c380e9bcbc18894

See more details on using hashes here.

File details

Details for the file cellfinder_core-0.3.0rc9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cellfinder_core-0.3.0rc9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f71b565d526aa7d6a19418fab6ab41aea1febd2d2bccd408e866bf633fff2449
MD5 10af992508d8e0d2b0e5ab5efd8174c6
BLAKE2b-256 c66fcab7f896243c82a5b2e922f1e87c2c2bb84cd18c4091ce9b136d4c9ac1a9

See more details on using hashes here.

File details

Details for the file cellfinder_core-0.3.0rc9-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for cellfinder_core-0.3.0rc9-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8e13366d857c6ad4e0103070764a1dc8c0809ded49da8edf825de222d35716c9
MD5 3e5bfb97f5af346aa0ca0840f3408813
BLAKE2b-256 c677f24fab5e8419d255c7bb544967dc2c52286978852bbdbe82fa8b76cae8e8

See more details on using hashes here.

File details

Details for the file cellfinder_core-0.3.0rc9-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for cellfinder_core-0.3.0rc9-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 75602579c13703dd720046b49caedc3ca0a6f6d19b28605079bd648456d2854b
MD5 35448b41863ba78882c84dd552c2ac4a
BLAKE2b-256 ebff90a5e99eed8358f41e7c46457fa5b6524af018412cdc42295c7537ab5db5

See more details on using hashes here.

File details

Details for the file cellfinder_core-0.3.0rc9-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for cellfinder_core-0.3.0rc9-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 cee340cf88d8b22a3c3965f34bbe141e54c1c63801979b4a395211cdf2f215a7
MD5 7f60233025e0c2286cde478bafb67f9e
BLAKE2b-256 10e27d52d41d19a721eb9363706480931341dbe115074ecbe667765cbecb14e7

See more details on using hashes here.

File details

Details for the file cellfinder_core-0.3.0rc9-cp39-cp39-win32.whl.

File metadata

File hashes

Hashes for cellfinder_core-0.3.0rc9-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 d4bd4ce5adff67b1caec71eb630275ab156875e1d67ba21a6e26d8a248db52b8
MD5 a1e3bb1cd2b916986ffb3f211b5280a8
BLAKE2b-256 163f94796ce51aa0d2929e88afe09aa87553e85c8217e297b6ae789ca3c58d7b

See more details on using hashes here.

File details

Details for the file cellfinder_core-0.3.0rc9-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for cellfinder_core-0.3.0rc9-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9bc822f2555d19d1fae6994d89d16f348903b36fceaab4ea2a5a9ed91215fc52
MD5 2e44f11ac3e9334cd01a03af7498f342
BLAKE2b-256 8e0787f9b6b0000cadbbcea65c642c19feae526c0a8d8e82f5561f0793020cba

See more details on using hashes here.

File details

Details for the file cellfinder_core-0.3.0rc9-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for cellfinder_core-0.3.0rc9-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 88be5bd1307beb7304b406d77c450bc7c5320bcc945d6cc4f8ba19fcd4ca48d6
MD5 260932e4b5073ff52ea30eed48cce6b9
BLAKE2b-256 71565ab38d674f6780f47f8d99b0f2e75e3fd53bbef7fa5c0acfe6ee809e1e48

See more details on using hashes here.

File details

Details for the file cellfinder_core-0.3.0rc9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cellfinder_core-0.3.0rc9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 542ca6141a3b16d98343023dded1775b68b4f7c08f7a42caa5e52149409a7f0b
MD5 de55521cf44475f7dee4392f15c3a393
BLAKE2b-256 28ba9eb2175a15a53891d17ad46cca8c3bccf11b4dd5a691c219489692003f93

See more details on using hashes here.

File details

Details for the file cellfinder_core-0.3.0rc9-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for cellfinder_core-0.3.0rc9-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a6dc1bd19349cfacf0ff73b7b87750c91a2b29789e4d55ec6c783b7b1f9e1263
MD5 1780819e2e0b4daf2f4c7a33bb3cb46f
BLAKE2b-256 382b2c919c3e985f35c79d68e74a6f3ffb7e924aff81b809f00758c8af605259

See more details on using hashes here.

File details

Details for the file cellfinder_core-0.3.0rc9-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for cellfinder_core-0.3.0rc9-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f1320aa2dddaf6b2eac04692b879c5d1350fe30b9bcbc8fbc3ec00d2fcd62e39
MD5 644735fd8aa34c3a2b5ada78581c5e86
BLAKE2b-256 90dff5e5144b0890d5a56585d978d770a8013e4778b37af4ed895b7be754ae70

See more details on using hashes here.

File details

Details for the file cellfinder_core-0.3.0rc9-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for cellfinder_core-0.3.0rc9-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9f1dad84d1568366201e47736872fe4ab915207de8432a4e8e85017600bd1ee1
MD5 21c5f3040504759f2c0bb9a97d481906
BLAKE2b-256 f9aaf0711f3f02f757150f076d71eab16c4ff897376dfd7d7af20cd06daa429b

See more details on using hashes here.

File details

Details for the file cellfinder_core-0.3.0rc9-cp38-cp38-win32.whl.

File metadata

File hashes

Hashes for cellfinder_core-0.3.0rc9-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 cbbc0509209a39a174e59256534683082ae957cbd4ac88c79045412f5b5b3543
MD5 4f21452bffdc5c3575363af981f33382
BLAKE2b-256 bce6b5356756a3bce7b8e04b365929df0436bd47ba0f89d6fe86a2e3f52eddef

See more details on using hashes here.

File details

Details for the file cellfinder_core-0.3.0rc9-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for cellfinder_core-0.3.0rc9-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1fd80eda92d5adba4cd7e9829cac563d963c8a74f19fa67157d4aaaa65f5dede
MD5 c7f7b3bef8c5615103b6741273900f42
BLAKE2b-256 1ee5bdbd1dbaa42f06ae65d7929c369db6414b2353986ca395d40acd759ce33b

See more details on using hashes here.

File details

Details for the file cellfinder_core-0.3.0rc9-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for cellfinder_core-0.3.0rc9-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0eb3321da54dc3d36aa2b34f8e6ff8d7473c35a73a9385d9014077af80199c63
MD5 919463da05989252d075641acf9f93b9
BLAKE2b-256 ca9a57e06b91e7643a5794e86926a7a2fcdee7721f3e51af4e33dc63d89204d0

See more details on using hashes here.

File details

Details for the file cellfinder_core-0.3.0rc9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cellfinder_core-0.3.0rc9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b2baae24d24c967966f336e56b9a9a46507b754892d066899f9678529b0e79d3
MD5 c050c9bb1f69bb1eac950710715557d0
BLAKE2b-256 ed2e67fbe9cb4a8481603d8fd82a109a41109a1dc60aa32b9b7783b3a9eac5ff

See more details on using hashes here.

File details

Details for the file cellfinder_core-0.3.0rc9-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for cellfinder_core-0.3.0rc9-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 14baed3452564f0aef77b2f2a3a56d735b399178a17a719f13a50d9e5fc01c62
MD5 af425ab02e7b1be0fdd4c9f58c44b5d1
BLAKE2b-256 027288ed80547151d88603d6303f65fa3b33ae84b5e4e273d6badf00a8876c83

See more details on using hashes here.

File details

Details for the file cellfinder_core-0.3.0rc9-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for cellfinder_core-0.3.0rc9-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d2a97daac7732d1a52beb47064bbac6b43c7f966ce6cfbcafe4d088a65995c35
MD5 20f0d7ff0e104ec3f1aeadc44c8308e0
BLAKE2b-256 b3d61a9f6ef1f70877b3b095ed3f5ea54500c01dff96940e70899e5bced01e4b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page