Skip to main content

Automated 3D cell detection and registration of whole-brain images

Project description

Python Version PyPI Downloads Wheel Development Status Tests Coverage Status Code style: black Contributions Website Twitter

Cellfinder

Whole-brain cell detection, registration and analysis.

N.B. If you want to just use the cell detection part of cellfinder, please see the standalone cellfinder-core package, or the cellfinder plugin for napari.


cellfinder is a collection of tools developed by Adam Tyson, Charly Rousseau and Christian Niedworok in the Margrie Lab, generously supported by the Sainsbury Wellcome Centre.

cellfinder is a designed for the analysis of whole-brain imaging data such as serial-section imaging and lightsheet imaging in cleared tissue. The aim is to provide a single solution for:

  • Cell detection (initial cell candidate detection and refinement using deep learning) (using cellfinder-core)
  • Atlas registration (using brainreg)
  • Analysis of cell positions in a common space

Installation is with pip install cellfinder.


Basic usage:

cellfinder -s signal_images -b background_images -o output_dir --metadata metadata

Full documentation can be found here. In particular, please see the data requirements.

This software is at a very early stage, and was written with our data in mind. Over time we hope to support other data types/formats. If you have any issues, please get in touch on the forum or by raising an issue.

If you have any other questions, please send an email.


Illustration

Introduction

cellfinder takes a stitched, but otherwise raw whole-brain dataset with at least two channels:

  • Background channel (i.e. autofluorescence)
  • Signal channel, the one with the cells to be detected:

raw Raw coronal serial two-photon mouse brain image showing labelled cells

Cell candidate detection

Classical image analysis (e.g. filters, thresholding) is used to find cell-like objects (with false positives):

raw Candidate cells (including many artefacts)

Cell candidate classification

A deep-learning network (ResNet) is used to classify cell candidates as true cells or artefacts:

raw Cassified cell candidates. Yellow - cells, Blue - artefacts

Registration and segmentation (brainreg)

Using brainreg, cellfinder aligns a template brain and atlas annotations (e.g. the Allen Reference Atlas, ARA) to the sample allowing detected cells to be assigned a brain region.

This transformation can be inverted, allowing detected cells to be transformed to a standard anatomical space.

raw ARA overlaid on sample image

Analysis of cell positions in a common anatomical space

Registration to a template allows for powerful group-level analysis of cellular disributions. (Example to come)

Examples

(more to come)

Tracing of inputs to retrosplenial cortex (RSP)

Input cell somas detected by cellfinder, aligned to the Allen Reference Atlas, and visualised in brainrender along with RSP.

brainrender

Data courtesy of Sepiedeh Keshavarzi and Chryssanthi Tsitoura. Details here

Visualisation

cellfinder comes with a plugin (brainglobe-napari-io) for napari to view your data

Usage

  • Open napari (however you normally do it, but typically just type napari into your terminal, or click on your desktop icon)

Load cellfinder XML file

  • Load your raw data (drag and drop the data directories into napari, one at a time)
  • Drag and drop your cellfinder XML file (e.g. cell_classification.xml) into napari.

Load cellfinder directory

  • Load your raw data (drag and drop the data directories into napari, one at a time)
  • Drag and drop your cellfinder output directory into napari.

The plugin will then load your detected cells (in yellow) and the rejected cell candidates (in blue). If you carried out registration, then these results will be overlaid (similarly to the loading brainreg data, but transformed to the coordinate space of your raw data).

load_data Loading raw data

load_data Loading cellfinder results

Citing cellfinder

If you find this plugin useful, and use it in your research, please cite the preprint outlining the cell detection algorithm:

Tyson, A. L., Rousseau, C. V., Niedworok, C. J., Keshavarzi, S., Tsitoura, C., Cossell, L., Strom, M. and Margrie, T. W. (2021) “A deep learning algorithm for 3D cell detection in whole mouse brain image datasets’ PLOS Computational Biology, 17(5), e1009074 https://doi.org/10.1371/journal.pcbi.1009074

If you use any of the image registration functions in cellfinder, please also cite brainreg.

If you use this, or any other tools in the brainglobe suite, please let us know, and we'd be happy to promote your paper/talk etc.


The BrainGlobe project is generously supported by the Sainsbury Wellcome Centre and the Institute of Neuroscience, Technical University of Munich, with funding from Wellcome, the Gatsby Charitable Foundation and the Munich Cluster for Systems Neurology - Synergy.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cellfinder-0.4.19rc0.tar.gz (35.3 kB view details)

Uploaded Source

Built Distribution

cellfinder-0.4.19rc0-py3-none-any.whl (33.6 kB view details)

Uploaded Python 3

File details

Details for the file cellfinder-0.4.19rc0.tar.gz.

File metadata

  • Download URL: cellfinder-0.4.19rc0.tar.gz
  • Upload date:
  • Size: 35.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for cellfinder-0.4.19rc0.tar.gz
Algorithm Hash digest
SHA256 138f36b2955208b7e4f172aa05cb1788784a43c0989a015d0b0ec4f3e98c452f
MD5 ffd65bcf26b480791491ef8599b16baa
BLAKE2b-256 e95064a60483352b49107641a858e0208e27342f900ea4dfe96bc750c8b71ebf

See more details on using hashes here.

File details

Details for the file cellfinder-0.4.19rc0-py3-none-any.whl.

File metadata

  • Download URL: cellfinder-0.4.19rc0-py3-none-any.whl
  • Upload date:
  • Size: 33.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for cellfinder-0.4.19rc0-py3-none-any.whl
Algorithm Hash digest
SHA256 3c91b35588693bb55f02d813d3e5be7d3a482adafe942d91794436073dc85fdd
MD5 dbe0c2a2c783fbe04d82b028930da2e7
BLAKE2b-256 0195f45a3b0b22815056c0d5de307cc7fccd04d7e22e31959a0c522f52a9eb4b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page