Skip to main content

Efficient and scalable image registration (alignment) for multiplexed imaging data

Project description

MIRAGE

Efficient and scalable image registration (alignment) for multiplexed imaging data. Currently only available for GPU.

Installation

git clone https://github.com/dpeerlab/MIRAGE.git
cd mirage
pip install -e .

Example

Also, check out the example in tests/quickstart.ipynb:

Before alignment:

before

After alignment:

after

# load package
import mirage

# Load images
image = mirage.tl.get_data("sample2_image.tiff")
reference = mirage.tl.get_data("sample2_reference.tiff")
# Images must be 2D numpy arrays (grayscale only) and scaled to 0-1.

# Initialise model
mirage_model = mirage.MIRAGE(
    images=image,
    references=reference,
    bin_mask=bin_mask,
    pad=12,
    offset=12,
    num_neurons=196,  # more for larger images
    num_layers=2,  # more for larger images
    pool=1, 
    loss="SSIM"
)

# Train model
mirage_model.train(batch_size=256, num_steps=256, lr__sched=True, LR=0.005)

# Apply transformation
mirage_model.compute_transform()
image_aligned = mirage_model.apply_transform(image)

# Inspect results pre/post alignment of a smale mesh
mesh = mirage.tl.Mesh(x=80, y=160, pad=35)
mirage.pl.plot_before_after(reference, image, image_aligned, mesh=mesh)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cellmirage-0.1.2.tar.gz (2.9 MB view details)

Uploaded Source

Built Distribution

cellmirage-0.1.2-py3-none-any.whl (2.9 MB view details)

Uploaded Python 3

File details

Details for the file cellmirage-0.1.2.tar.gz.

File metadata

  • Download URL: cellmirage-0.1.2.tar.gz
  • Upload date:
  • Size: 2.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.9.13 Darwin/22.4.0

File hashes

Hashes for cellmirage-0.1.2.tar.gz
Algorithm Hash digest
SHA256 06a0fb712cf8a9a504a2c50eec9d981b07eb6a432f8c934b900c2ea9e2b379d6
MD5 28983468eb1a5ba604c9582b1cdbfb96
BLAKE2b-256 24ad9f6a6965cc405b88c0d5db9a5af9d973f184763ffb98e62009fed06db62a

See more details on using hashes here.

File details

Details for the file cellmirage-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: cellmirage-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.9.13 Darwin/22.4.0

File hashes

Hashes for cellmirage-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 e8f155869df5076686796b6d94c808c199a9833e49d80b3dde45107ec365950d
MD5 ec040699fee01f5153d58130135da49c
BLAKE2b-256 92e75be86791b4b0014517fdfea9d2b301b2afa9020c31f6ac1c7b1711d3d0bf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page