Skip to main content

3D cell shape analysis using geometric deep learning on point clouds

Project description

Python Version PyPI Downloads Wheel Development Status Tests Coverage Status Code style: black

Cellshape logo by Matt De Vries


Cellshape-cloud is an easy-to-use tool to analyse the shapes of cells using deep learning and, in particular, graph-neural networks. The tool provides the ability to train popular graph-based autoencoders on point cloud data of 2D and 3D single cell masks as well as providing pre-trained networks for inference.

To install

pip install cellshape-cloud

Usage

Basic Usage

import torch
from cellshape_cloud import CloudAutoEncoder

model = CloudAutoEncoder(num_features=128, 
                         k=20,
                         encoder_type="dgcnn",
                         decoder_type="foldingnet")

points = torch.randn(1, 2048, 3)

recon, features = model(points)

To train an autoencoder on a set of point clouds created using cellshape-helper:

import torch
from torch.utils.data import DataLoader

import cellshape_cloud as cloud
from cellshape_cloud.vendor.chamfer_distance import ChamferLoss


input_dir = "path/to/pointcloud/files/"
batch_size = 16
learning_rate = 0.0001
num_epochs = 1
output_dir = "path/to/save/output/"

model = cloud.CloudAutoEncoder(num_features=128, 
                         k=20,
                         encoder_type="dgcnn",
                         decoder_type="foldingnet")

dataset = cloud.PointCloudDataset(input_dir)

dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

criterion = ChamferLoss()

optimizer = torch.optim.Adam(
    model.parameters(),
    lr=learning_rate * 16 / batch_size,
    betas=(0.9, 0.999),
    weight_decay=1e-6,
)

cloud.train(model, dataloader, num_epochs, criterion, optimizer, output_dir)

Parameters

  • num_features: int.
    The size of the latent space of the autoencoder.
  • k: int.
    The number of neightbours to use in the k-nearest-neighbours graph construction.
  • encoder_type: str.
    The type of encoder: 'foldingnet' or 'dgcnn'
  • decoder_type: str.
    The type of decoder: 'foldingnet' or 'dgcnn'

References

[1] An Tao, 'Unsupervised Point Cloud Reconstruction for Classific Feature Learning', GitHub Repo, 2020

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cellshape-cloud-0.1.3.tar.gz (21.4 kB view details)

Uploaded Source

Built Distribution

cellshape_cloud-0.1.3-py3-none-any.whl (26.1 kB view details)

Uploaded Python 3

File details

Details for the file cellshape-cloud-0.1.3.tar.gz.

File metadata

  • Download URL: cellshape-cloud-0.1.3.tar.gz
  • Upload date:
  • Size: 21.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for cellshape-cloud-0.1.3.tar.gz
Algorithm Hash digest
SHA256 b409a9f5d59f6d0071db6a0341bd6684a2c1f4d2c265d296b370fa45203a4495
MD5 2051eda9b4ff8e0bdbf25f2d1a4d691a
BLAKE2b-256 1559779c526cb9b527957a2a7e1f5e1ddf441c27c109f2c2716d9d6bac079486

See more details on using hashes here.

File details

Details for the file cellshape_cloud-0.1.3-py3-none-any.whl.

File metadata

File hashes

Hashes for cellshape_cloud-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 942b050a93d021e67bd79417833caacced593cac299e8ed46b184893d0a280e7
MD5 c80343a0aee21fcd959378421c1a35ad
BLAKE2b-256 8576db49c113b932f0cc4e9085cb3f2494d89ef1d510f19b10016ffb250edbe2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page