Skip to main content

3D cell shape analysis using geometric deep learning on point clouds

Project description

Python Version PyPI Downloads Wheel Development Status Tests Coverage Status Code style: black

Cellshape logo by Matt De Vries


Cellshape-cloud is an easy-to-use tool to analyse the shapes of cells using deep learning and, in particular, graph-neural networks. The tool provides the ability to train popular graph-based autoencoders on point cloud data of 2D and 3D single cell masks as well as providing pre-trained networks for inference.

To install

pip install cellshape-cloud

Usage

Basic Usage

import torch
from cellshape_cloud import CloudAutoEncoder

model = CloudAutoEncoder(num_features=128, 
                         k=20,
                         encoder_type="dgcnn",
                         decoder_type="foldingnet")

points = torch.randn(1, 2048, 3)

recon, features = model(points)

To train an autoencoder on a set of point clouds created using cellshape-helper:

import torch
from torch.utils.data import DataLoader

import cellshape_cloud as cloud
from cellshape_cloud.vendor.chamfer_distance import ChamferLoss


input_dir = "path/to/pointcloud/files/"
batch_size = 16
learning_rate = 0.0001
num_epochs = 1
output_dir = "path/to/save/output/"

model = cloud.CloudAutoEncoder(num_features=128, 
                         k=20,
                         encoder_type="dgcnn",
                         decoder_type="foldingnet")

dataset = cloud.PointCloudDataset(input_dir)

dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

criterion = ChamferLoss()

optimizer = torch.optim.Adam(
    model.parameters(),
    lr=learning_rate * 16 / batch_size,
    betas=(0.9, 0.999),
    weight_decay=1e-6,
)

cloud.train(model, dataloader, num_epochs, criterion, optimizer, output_dir)

Parameters

  • num_features: int.
    The size of the latent space of the autoencoder.
  • k: int.
    The number of neightbours to use in the k-nearest-neighbours graph construction.
  • encoder_type: str.
    The type of encoder: 'foldingnet' or 'dgcnn'
  • decoder_type: str.
    The type of decoder: 'foldingnet' or 'dgcnn'

For developers

  • Fork the repository
  • Clone your fork
git clone https://github.com/USERNAME/cellshape-cloud 
  • Install an editable version (-e) with the development requirements (dev)
cd cellshape-cloud
pip install -e .[dev] 
  • To install pre-commit hooks to ensure formatting is correct:
pre-commit install
  • To release a new version:

Firstly, update the version with bump2version (bump2version patch, bump2version minor or bump2version major). This will increment the package version (to a release candidate - e.g. 0.0.1rc0) and tag the commit. Push this tag to GitHub to run the deployment workflow:

git push --follow-tags

Once the release candidate has been tested, the release version can be created with:

bump2version release

References

[1] An Tao, 'Unsupervised Point Cloud Reconstruction for Classific Feature Learning', GitHub Repo, 2020

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cellshape-cloud-0.0.24rc0.tar.gz (14.9 kB view details)

Uploaded Source

Built Distribution

cellshape_cloud-0.0.24rc0-py3-none-any.whl (17.9 kB view details)

Uploaded Python 3

File details

Details for the file cellshape-cloud-0.0.24rc0.tar.gz.

File metadata

  • Download URL: cellshape-cloud-0.0.24rc0.tar.gz
  • Upload date:
  • Size: 14.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for cellshape-cloud-0.0.24rc0.tar.gz
Algorithm Hash digest
SHA256 d784dfb322b059522dbfe9cedfe1cbe29be96d5b7f0d821f1e202f2f60d91937
MD5 64a8070ebffdb41a77770d50c2407901
BLAKE2b-256 6829ec897e66fca91ff776affe5a6c960715e94094cd2da28e0aa41ab9ba5d09

See more details on using hashes here.

File details

Details for the file cellshape_cloud-0.0.24rc0-py3-none-any.whl.

File metadata

File hashes

Hashes for cellshape_cloud-0.0.24rc0-py3-none-any.whl
Algorithm Hash digest
SHA256 be36ba6224233d04d054d9feff90b2aaf094f0371aaac372343c2f6586125a02
MD5 1ba518c8a4eeeca24bb9451bcbb5f4b9
BLAKE2b-256 3282fc0e9df1720ded6e962b20b1047aa27ad2f2009913517b174a13b29780aa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page