Skip to main content

3D cell shape analysis using geometric deep learning on point clouds

Project description

Python Version PyPI Downloads Wheel Development Status Tests Coverage Status Code style: black

Cellshape logo by Matt De Vries


Cellshape-cloud is an easy-to-use tool to analyse the shapes of cells using deep learning and, in particular, graph-neural networks. The tool provides the ability to train popular graph-based autoencoders on point cloud data of 2D and 3D single cell masks as well as providing pre-trained networks for inference.

To install

pip install cellshape-cloud

Usage

Basic Usage

import torch
from cellshape_cloud import CloudAutoEncoder

model = CloudAutoEncoder(num_features=128, 
                         k=20,
                         encoder_type="dgcnn",
                         decoder_type="foldingnet")

points = torch.randn(1, 2048, 3)

recon, features = model(points)

To train an autoencoder on a set of point clouds created using cellshape-helper:

import torch
from torch.utils.data import DataLoader

import cellshape_cloud as cloud
from cellshape_cloud.vendor.chamfer_distance import ChamferLoss


input_dir = "path/to/pointcloud/files/"
batch_size = 16
learning_rate = 0.0001
num_epochs = 1
output_dir = "path/to/save/output/"

model = cloud.CloudAutoEncoder(num_features=128, 
                         k=20,
                         encoder_type="dgcnn",
                         decoder_type="foldingnet")

dataset = cloud.PointCloudDataset(input_dir)

dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

criterion = ChamferLoss()

optimizer = torch.optim.Adam(
    model.parameters(),
    lr=learning_rate * 16 / batch_size,
    betas=(0.9, 0.999),
    weight_decay=1e-6,
)

cloud.train(model, dataloader, num_epochs, criterion, optimizer, output_dir)

Parameters

  • num_features: int.
    The size of the latent space of the autoencoder.
  • k: int.
    The number of neightbours to use in the k-nearest-neighbours graph construction.
  • encoder_type: str.
    The type of encoder: 'foldingnet' or 'dgcnn'
  • decoder_type: str.
    The type of decoder: 'foldingnet' or 'dgcnn'

For developers

  • Fork the repository
  • Clone your fork
git clone https://github.com/USERNAME/cellshape-cloud 
  • Install an editable version (-e) with the development requirements (dev)
cd cellshape-cloud
pip install -e .[dev] 
  • To install pre-commit hooks to ensure formatting is correct:
pre-commit install
  • To release a new version:

Firstly, update the version with bump2version (bump2version patch, bump2version minor or bump2version major). This will increment the package version (to a release candidate - e.g. 0.0.1rc0) and tag the commit. Push this tag to GitHub to run the deployment workflow:

git push --follow-tags

Once the release candidate has been tested, the release version can be created with:

bump2version release

References

[1] An Tao, 'Unsupervised Point Cloud Reconstruction for Classific Feature Learning', GitHub Repo, 2020

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cellshape-cloud-0.0.26rc0.tar.gz (15.2 kB view details)

Uploaded Source

Built Distribution

cellshape_cloud-0.0.26rc0-py3-none-any.whl (18.4 kB view details)

Uploaded Python 3

File details

Details for the file cellshape-cloud-0.0.26rc0.tar.gz.

File metadata

  • Download URL: cellshape-cloud-0.0.26rc0.tar.gz
  • Upload date:
  • Size: 15.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for cellshape-cloud-0.0.26rc0.tar.gz
Algorithm Hash digest
SHA256 ac3d6563407d8d0b1e8db03cc4b40bd8225c2974944b5f9ff4cd9362abe4702d
MD5 c99a8197c0dd8e85bf8911784aa855b7
BLAKE2b-256 13ed3b0e65214a2676493e8b80fb85198c8e6403c48675bc7115b9130f921854

See more details on using hashes here.

File details

Details for the file cellshape_cloud-0.0.26rc0-py3-none-any.whl.

File metadata

File hashes

Hashes for cellshape_cloud-0.0.26rc0-py3-none-any.whl
Algorithm Hash digest
SHA256 a26f6bbe193ff2aaa5f07fc2dc5040ab0cfbe26858a4bab249f6b549442c5f1b
MD5 fcc41d8b8c7befc4b84a95c453c6a106
BLAKE2b-256 8190c76aa74151134114c1a068e6fa014c36b41cf5bcf97c0f307ea5233baa95

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page