3D cell shape analysis using geometric deep learning on point clouds
Project description
Cellshape-cloud is an easy-to-use tool to analyse the shapes of cells using deep learning and, in particular, graph-neural networks. The tool provides the ability to train popular graph-based autoencoders on point cloud data of 2D and 3D single cell masks as well as providing pre-trained networks for inference.
To install
pip install cellshape-cloud
Usage
Basic Usage
import torch
from cellshape_cloud import CloudAutoEncoder
model = CloudAutoEncoder(num_features=128,
k=20,
encoder_type="dgcnn",
decoder_type="foldingnet")
points = torch.randn(1, 2048, 3)
recon, features = model(points)
To train an autoencoder on a set of point clouds created using cellshape-helper:
import torch
from torch.utils.data import DataLoader
import cellshape_cloud as cloud
from cellshape_cloud.vendor.chamfer_distance import ChamferLoss
input_dir = "path/to/pointcloud/files/"
batch_size = 16
learning_rate = 0.0001
num_epochs = 1
output_dir = "path/to/save/output/"
model = cloud.CloudAutoEncoder(num_features=128,
k=20,
encoder_type="dgcnn",
decoder_type="foldingnet")
dataset = cloud.PointCloudDataset(input_dir)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
criterion = ChamferLoss()
optimizer = torch.optim.Adam(
model.parameters(),
lr=learning_rate * 16 / batch_size,
betas=(0.9, 0.999),
weight_decay=1e-6,
)
cloud.train(model, dataloader, num_epochs, criterion, optimizer, output_dir)
Parameters
num_features
: int.
The size of the latent space of the autoencoder.k
: int.
The number of neightbours to use in the k-nearest-neighbours graph construction.encoder_type
: str.
The type of encoder: 'foldingnet' or 'dgcnn'decoder_type
: str.
The type of decoder: 'foldingnet' or 'dgcnn'
For developers
- Fork the repository
- Clone your fork
git clone https://github.com/USERNAME/cellshape-cloud
- Install an editable version (
-e
) with the development requirements (dev
)
cd cellshape-cloud
pip install -e .[dev]
- To install pre-commit hooks to ensure formatting is correct:
pre-commit install
- To release a new version:
Firstly, update the version with bump2version (bump2version patch
,
bump2version minor
or bump2version major
). This will increment the
package version (to a release candidate - e.g. 0.0.1rc0
) and tag the
commit. Push this tag to GitHub to run the deployment workflow:
git push --follow-tags
Once the release candidate has been tested, the release version can be created with:
bump2version release
References
[1] An Tao, 'Unsupervised Point Cloud Reconstruction for Classific Feature Learning', GitHub Repo, 2020
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file cellshape-cloud-0.0.26rc0.tar.gz
.
File metadata
- Download URL: cellshape-cloud-0.0.26rc0.tar.gz
- Upload date:
- Size: 15.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ac3d6563407d8d0b1e8db03cc4b40bd8225c2974944b5f9ff4cd9362abe4702d |
|
MD5 | c99a8197c0dd8e85bf8911784aa855b7 |
|
BLAKE2b-256 | 13ed3b0e65214a2676493e8b80fb85198c8e6403c48675bc7115b9130f921854 |
File details
Details for the file cellshape_cloud-0.0.26rc0-py3-none-any.whl
.
File metadata
- Download URL: cellshape_cloud-0.0.26rc0-py3-none-any.whl
- Upload date:
- Size: 18.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a26f6bbe193ff2aaa5f07fc2dc5040ab0cfbe26858a4bab249f6b549442c5f1b |
|
MD5 | fcc41d8b8c7befc4b84a95c453c6a106 |
|
BLAKE2b-256 | 8190c76aa74151134114c1a068e6fa014c36b41cf5bcf97c0f307ea5233baa95 |