Skip to main content

3D cell shape analysis using geometric deep learning on point clouds

Project description

Python Version PyPI Downloads Wheel Development Status Tests Coverage Status Code style: black

Cellshape logo by Matt De Vries


Cellshape-cloud is an easy-to-use tool to analyse the shapes of cells using deep learning and, in particular, graph-neural networks. The tool provides the ability to train popular graph-based autoencoders on point cloud data of 2D and 3D single cell masks as well as providing pre-trained networks for inference.

To install

pip install cellshape-cloud

Usage

Basic Usage

import torch
from cellshape_cloud import CloudAutoEncoder

model = CloudAutoEncoder(num_features=128, 
                         k=20,
                         encoder_type="dgcnn",
                         decoder_type="foldingnet")

points = torch.randn(1, 2048, 3)

recon, features = model(points)

To train an autoencoder on a set of point clouds created using cellshape-helper:

import torch
from torch.utils.data import DataLoader

import cellshape_cloud as cloud
from cellshape_cloud.vendor.chamfer_distance import ChamferLoss


input_dir = "path/to/pointcloud/files/"
batch_size = 16
learning_rate = 0.0001
num_epochs = 1
output_dir = "path/to/save/output/"

model = cloud.CloudAutoEncoder(num_features=128, 
                         k=20,
                         encoder_type="dgcnn",
                         decoder_type="foldingnet")

dataset = cloud.PointCloudDataset(input_dir)

dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

criterion = ChamferLoss()

optimizer = torch.optim.Adam(
    model.parameters(),
    lr=learning_rate * 16 / batch_size,
    betas=(0.9, 0.999),
    weight_decay=1e-6,
)

cloud.train(model, dataloader, num_epochs, criterion, optimizer, output_dir)

Parameters

  • num_features: int.
    The size of the latent space of the autoencoder.
  • k: int.
    The number of neightbours to use in the k-nearest-neighbours graph construction.
  • encoder_type: str.
    The type of encoder: 'foldingnet' or 'dgcnn'
  • decoder_type: str.
    The type of decoder: 'foldingnet' or 'dgcnn'

References

[1] An Tao, 'Unsupervised Point Cloud Reconstruction for Classific Feature Learning', GitHub Repo, 2020

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cellshape-cloud-0.0.27.tar.gz (15.7 kB view details)

Uploaded Source

Built Distribution

cellshape_cloud-0.0.27-py3-none-any.whl (19.3 kB view details)

Uploaded Python 3

File details

Details for the file cellshape-cloud-0.0.27.tar.gz.

File metadata

  • Download URL: cellshape-cloud-0.0.27.tar.gz
  • Upload date:
  • Size: 15.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for cellshape-cloud-0.0.27.tar.gz
Algorithm Hash digest
SHA256 d874ee3c3d4f933227d767641e5c80d1ba42f07b6e8af9035605d78fca5475a5
MD5 584413649bd4fce3f1f94656febe8207
BLAKE2b-256 5f4d76a2ea5dd8591380e17cf0428be91662ae1fc0539c81ac8ee340edd9d522

See more details on using hashes here.

File details

Details for the file cellshape_cloud-0.0.27-py3-none-any.whl.

File metadata

File hashes

Hashes for cellshape_cloud-0.0.27-py3-none-any.whl
Algorithm Hash digest
SHA256 6c7fbe38919f1d63dc1591209f419e68697805e7e5b2c95b276524f9e27eba3c
MD5 cda83127b2ed08946e445f08a0e66f11
BLAKE2b-256 2aff32d37383363cda996020f6a63e07a2e4ca1e9568a7e6b1f6008e0f7f3513

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page