Skip to main content

3D cell shape analysis using geometric deep learning on point clouds

Project description

Python Version PyPI Downloads Wheel Development Status Tests Coverage Status Code style: black

Cellshape logo by Matt De Vries


Cellshape-cloud is an easy-to-use tool to analyse the shapes of cells using deep learning and, in particular, graph-neural networks. The tool provides the ability to train popular graph-based autoencoders on point cloud data of 2D and 3D single cell masks as well as providing pre-trained networks for inference.

To install

pip install cellshape-cloud

Usage

Basic Usage

import torch
from cellshape_cloud import CloudAutoEncoder

model = CloudAutoEncoder(num_features=128, 
                         k=20,
                         encoder_type="dgcnn",
                         decoder_type="foldingnet")

points = torch.randn(1, 2048, 3)

recon, features = model(points)

To train an autoencoder on a set of point clouds created using cellshape-helper:

import torch
from torch.utils.data import DataLoader

import cellshape_cloud as cloud
from cellshape_cloud.vendor.chamfer_distance import ChamferLoss


input_dir = "path/to/pointcloud/files/"
batch_size = 16
learning_rate = 0.0001
num_epochs = 1
output_dir = "path/to/save/output/"

model = cloud.CloudAutoEncoder(num_features=128, 
                         k=20,
                         encoder_type="dgcnn",
                         decoder_type="foldingnet")

dataset = cloud.PointCloudDataset(input_dir)

dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

criterion = ChamferLoss()

optimizer = torch.optim.Adam(
    model.parameters(),
    lr=learning_rate * 16 / batch_size,
    betas=(0.9, 0.999),
    weight_decay=1e-6,
)

cloud.train(model, dataloader, num_epochs, criterion, optimizer, output_dir)

Parameters

  • num_features: int.
    The size of the latent space of the autoencoder.
  • k: int.
    The number of neightbours to use in the k-nearest-neighbours graph construction.
  • encoder_type: str.
    The type of encoder: 'foldingnet' or 'dgcnn'
  • decoder_type: str.
    The type of decoder: 'foldingnet' or 'dgcnn'

References

[1] An Tao, 'Unsupervised Point Cloud Reconstruction for Classific Feature Learning', GitHub Repo, 2020

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cellshape-cloud-0.0.28rc0.tar.gz (16.0 kB view details)

Uploaded Source

Built Distribution

cellshape_cloud-0.0.28rc0-py3-none-any.whl (19.5 kB view details)

Uploaded Python 3

File details

Details for the file cellshape-cloud-0.0.28rc0.tar.gz.

File metadata

  • Download URL: cellshape-cloud-0.0.28rc0.tar.gz
  • Upload date:
  • Size: 16.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for cellshape-cloud-0.0.28rc0.tar.gz
Algorithm Hash digest
SHA256 ba7c75e6af966d177439802671c24af466b8dc662f032a6fbe1e8621523bd63a
MD5 24c3523b4d385519a68b0246cb2d34af
BLAKE2b-256 b9278f52c37605c356d5170e5fe69814552e87461ad8185193277547cdf318ec

See more details on using hashes here.

File details

Details for the file cellshape_cloud-0.0.28rc0-py3-none-any.whl.

File metadata

File hashes

Hashes for cellshape_cloud-0.0.28rc0-py3-none-any.whl
Algorithm Hash digest
SHA256 4dc51a3724a2435a20d1ed2c8e1787c1ee4e488bad4c50aba989a3835eb3b17f
MD5 449671cfd28ee5e52398ebfa2797d967
BLAKE2b-256 d0eb85e6d541c5b171afa7bcb3a5972c2959a339448b8e8e4f6a8d61cf1b2691

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page