Skip to main content

3D cell shape analysis using geometric deep learning on point clouds

Project description

Python Version PyPI Downloads Wheel Development Status Tests Coverage Status Code style: black

Cellshape logo by Matt De Vries


Cellshape-cloud is an easy-to-use tool to analyse the shapes of cells using deep learning and, in particular, graph-neural networks. The tool provides the ability to train popular graph-based autoencoders on point cloud data of 2D and 3D single cell masks as well as providing pre-trained networks for inference.

To install

pip install cellshape-cloud

Usage

Basic Usage

import torch
from cellshape_cloud import CloudAutoEncoder

model = CloudAutoEncoder(num_features=128, 
                         k=20,
                         encoder_type="dgcnn",
                         decoder_type="foldingnet")

points = torch.randn(1, 2048, 3)

recon, features = model(points)

To train an autoencoder on a set of point clouds created using cellshape-helper:

import torch
from torch.utils.data import DataLoader

import cellshape_cloud as cloud
from cellshape_cloud.vendor.chamfer_distance import ChamferLoss


input_dir = "path/to/pointcloud/files/"
batch_size = 16
learning_rate = 0.0001
num_epochs = 1
output_dir = "path/to/save/output/"

model = cloud.CloudAutoEncoder(num_features=128, 
                         k=20,
                         encoder_type="dgcnn",
                         decoder_type="foldingnet")

dataset = cloud.PointCloudDataset(input_dir)

dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

criterion = ChamferLoss()

optimizer = torch.optim.Adam(
    model.parameters(),
    lr=learning_rate * 16 / batch_size,
    betas=(0.9, 0.999),
    weight_decay=1e-6,
)

cloud.train(model, dataloader, num_epochs, criterion, optimizer, output_dir)

Parameters

  • num_features: int.
    The size of the latent space of the autoencoder.
  • k: int.
    The number of neightbours to use in the k-nearest-neighbours graph construction.
  • encoder_type: str.
    The type of encoder: 'foldingnet' or 'dgcnn'
  • decoder_type: str.
    The type of decoder: 'foldingnet' or 'dgcnn'

References

[1] An Tao, 'Unsupervised Point Cloud Reconstruction for Classific Feature Learning', GitHub Repo, 2020

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cellshape-cloud-0.1.0.tar.gz (20.9 kB view details)

Uploaded Source

Built Distribution

cellshape_cloud-0.1.0-py3-none-any.whl (25.6 kB view details)

Uploaded Python 3

File details

Details for the file cellshape-cloud-0.1.0.tar.gz.

File metadata

  • Download URL: cellshape-cloud-0.1.0.tar.gz
  • Upload date:
  • Size: 20.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for cellshape-cloud-0.1.0.tar.gz
Algorithm Hash digest
SHA256 7b9715d1860c8ffcaa17015d4cc6ab9efdbb856aa2cb7755defbfbba2d1a8c66
MD5 9dfd507a77febb646e9f85b91db82332
BLAKE2b-256 b7948ca6fdba8dc0521088f947f1b4cbb3f9b2b6f8df6bec1544aba28ab00ed4

See more details on using hashes here.

File details

Details for the file cellshape_cloud-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for cellshape_cloud-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 e9fc8c19731eff0c9e8dd6f4278ce6226b744a0194a4ca2ca5d5c4ff86f96ff7
MD5 c8f1135ebd76ef95f9c0102bde4fad45
BLAKE2b-256 d670ff251e7ee57722f53193207431b8f3eb025538cff480ace429b8209f7a85

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page