Skip to main content

3D cell shape analysis using geometric deep learning on point clouds

Project description

Python Version PyPI Downloads Wheel Development Status Tests Coverage Status Code style: black

Cellshape logo by Matt De Vries


Cellshape-cloud is an easy-to-use tool to analyse the shapes of cells using deep learning and, in particular, graph-neural networks. The tool provides the ability to train popular graph-based autoencoders on point cloud data of 2D and 3D single cell masks as well as providing pre-trained networks for inference.

To install

pip install cellshape-cloud

Usage

Basic Usage

import torch
from cellshape_cloud import CloudAutoEncoder

model = CloudAutoEncoder(num_features=128, 
                         k=20,
                         encoder_type="dgcnn",
                         decoder_type="foldingnet")

points = torch.randn(1, 2048, 3)

recon, features = model(points)

To train an autoencoder on a set of point clouds created using cellshape-helper:

import torch
from torch.utils.data import DataLoader

import cellshape_cloud as cloud
from cellshape_cloud.vendor.chamfer_distance import ChamferLoss


input_dir = "path/to/pointcloud/files/"
batch_size = 16
learning_rate = 0.0001
num_epochs = 1
output_dir = "path/to/save/output/"

model = cloud.CloudAutoEncoder(num_features=128, 
                         k=20,
                         encoder_type="dgcnn",
                         decoder_type="foldingnet")

dataset = cloud.PointCloudDataset(input_dir)

dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

criterion = ChamferLoss()

optimizer = torch.optim.Adam(
    model.parameters(),
    lr=learning_rate * 16 / batch_size,
    betas=(0.9, 0.999),
    weight_decay=1e-6,
)

cloud.train(model, dataloader, num_epochs, criterion, optimizer, output_dir)

Parameters

  • num_features: int.
    The size of the latent space of the autoencoder.
  • k: int.
    The number of neightbours to use in the k-nearest-neighbours graph construction.
  • encoder_type: str.
    The type of encoder: 'foldingnet' or 'dgcnn'
  • decoder_type: str.
    The type of decoder: 'foldingnet' or 'dgcnn'

References

[1] An Tao, 'Unsupervised Point Cloud Reconstruction for Classific Feature Learning', GitHub Repo, 2020

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cellshape-cloud-0.1.1.tar.gz (21.3 kB view details)

Uploaded Source

Built Distribution

cellshape_cloud-0.1.1-py3-none-any.whl (26.1 kB view details)

Uploaded Python 3

File details

Details for the file cellshape-cloud-0.1.1.tar.gz.

File metadata

  • Download URL: cellshape-cloud-0.1.1.tar.gz
  • Upload date:
  • Size: 21.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for cellshape-cloud-0.1.1.tar.gz
Algorithm Hash digest
SHA256 022521d5e510ace46c78c22356936c979e15b64aaa46257130bb1a8e7342a9dd
MD5 a53c58d3a856e128a78dd506bb63df43
BLAKE2b-256 6221a4e1ca408aecbf6720bc810213852c5340a3b4692403e6bb0ce138efe51e

See more details on using hashes here.

File details

Details for the file cellshape_cloud-0.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for cellshape_cloud-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 627e06fdfcdf20af3ba7b7fd9de215321c089abe92277ca6163b64d9a398a76a
MD5 b0767897f4eb829410ec5c1c1de8bd40
BLAKE2b-256 959207ddbae5a52dd77fe2960ee4519ce0cbd2a45c52c9daf6478e40755192a9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page