Skip to main content

3D cell shape analysis using geometric deep learning on point clouds

Project description

Python Version PyPI Downloads Wheel Development Status Tests Coverage Status Code style: black

Cellshape logo by Matt De Vries


Cellshape-cloud is an easy-to-use tool to analyse the shapes of cells using deep learning and, in particular, graph-neural networks. The tool provides the ability to train popular graph-based autoencoders on point cloud data of 2D and 3D single cell masks as well as providing pre-trained networks for inference.

To install

pip install cellshape-cloud

Usage

Basic Usage

import torch
from cellshape_cloud import CloudAutoEncoder

model = CloudAutoEncoder(num_features=128, 
                         k=20,
                         encoder_type="dgcnn",
                         decoder_type="foldingnet")

points = torch.randn(1, 2048, 3)

recon, features = model(points)

To train an autoencoder on a set of point clouds created using cellshape-helper:

import torch
from torch.utils.data import DataLoader

import cellshape_cloud as cloud
from cellshape_cloud.vendor.chamfer_distance import ChamferLoss


input_dir = "path/to/pointcloud/files/"
batch_size = 16
learning_rate = 0.0001
num_epochs = 1
output_dir = "path/to/save/output/"

model = cloud.CloudAutoEncoder(num_features=128, 
                         k=20,
                         encoder_type="dgcnn",
                         decoder_type="foldingnet")

dataset = cloud.PointCloudDataset(input_dir)

dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

criterion = ChamferLoss()

optimizer = torch.optim.Adam(
    model.parameters(),
    lr=learning_rate * 16 / batch_size,
    betas=(0.9, 0.999),
    weight_decay=1e-6,
)

cloud.train(model, dataloader, num_epochs, criterion, optimizer, output_dir)

Parameters

  • num_features: int.
    The size of the latent space of the autoencoder.
  • k: int.
    The number of neightbours to use in the k-nearest-neighbours graph construction.
  • encoder_type: str.
    The type of encoder: 'foldingnet' or 'dgcnn'
  • decoder_type: str.
    The type of decoder: 'foldingnet' or 'dgcnn'

References

[1] An Tao, 'Unsupervised Point Cloud Reconstruction for Classific Feature Learning', GitHub Repo, 2020

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cellshape-cloud-0.1.2.tar.gz (21.4 kB view details)

Uploaded Source

Built Distribution

cellshape_cloud-0.1.2-py3-none-any.whl (26.1 kB view details)

Uploaded Python 3

File details

Details for the file cellshape-cloud-0.1.2.tar.gz.

File metadata

  • Download URL: cellshape-cloud-0.1.2.tar.gz
  • Upload date:
  • Size: 21.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for cellshape-cloud-0.1.2.tar.gz
Algorithm Hash digest
SHA256 764969d1a07f2a56ec1ab5c22ce2bd19b7329beb8690623d59ec381bec9a092a
MD5 735fc60187ec32603b9a2af2e19e531f
BLAKE2b-256 8389db0ccf47ea0c654022e1866069d9be97ad935ca595ac86cfd40fe03edbfe

See more details on using hashes here.

File details

Details for the file cellshape_cloud-0.1.2-py3-none-any.whl.

File metadata

File hashes

Hashes for cellshape_cloud-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 274368abc506fb0e032c9e9436a2bdc23c9fc53ee26d31591d0c48c631173627
MD5 1c1be3b30273aa44723dd5812205fe1b
BLAKE2b-256 d0113b9cba992658cc52cebb5ca4bf847ff77bec1a881abe72815634accac89e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page