Skip to main content

3D cell shape analysis using geometric deep learning on point clouds

Project description

Python Version PyPI Downloads Wheel Development Status Tests Coverage Status Code style: black

Cellshape logo by Matt De Vries


Cellshape-cloud is an easy-to-use tool to analyse the shapes of cells using deep learning and, in particular, graph-neural networks. The tool provides the ability to train popular graph-based autoencoders on point cloud data of 2D and 3D single cell masks as well as providing pre-trained networks for inference.

To install

pip install cellshape-cloud

Usage

Basic Usage

import torch
from cellshape_cloud import CloudAutoEncoder

model = CloudAutoEncoder(num_features=128, 
                         k=20,
                         encoder_type="dgcnn",
                         decoder_type="foldingnet")

points = torch.randn(1, 2048, 3)

recon, features = model(points)

To train an autoencoder on a set of point clouds created using cellshape-helper:

import torch
from torch.utils.data import DataLoader

import cellshape_cloud as cloud
from cellshape_cloud.vendor.chamfer_distance import ChamferLoss


input_dir = "path/to/pointcloud/files/"
batch_size = 16
learning_rate = 0.0001
num_epochs = 1
output_dir = "path/to/save/output/"

model = cloud.CloudAutoEncoder(num_features=128, 
                         k=20,
                         encoder_type="dgcnn",
                         decoder_type="foldingnet")

dataset = cloud.PointCloudDataset(input_dir)

dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

criterion = ChamferLoss()

optimizer = torch.optim.Adam(
    model.parameters(),
    lr=learning_rate * 16 / batch_size,
    betas=(0.9, 0.999),
    weight_decay=1e-6,
)

cloud.train(model, dataloader, num_epochs, criterion, optimizer, output_dir)

Parameters

  • num_features: int.
    The size of the latent space of the autoencoder.
  • k: int.
    The number of neightbours to use in the k-nearest-neighbours graph construction.
  • encoder_type: str.
    The type of encoder: 'foldingnet' or 'dgcnn'
  • decoder_type: str.
    The type of decoder: 'foldingnet' or 'dgcnn'

References

[1] An Tao, 'Unsupervised Point Cloud Reconstruction for Classific Feature Learning', GitHub Repo, 2020

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cellshape-cloud-0.1.2rc0.tar.gz (21.4 kB view details)

Uploaded Source

Built Distribution

cellshape_cloud-0.1.2rc0-py3-none-any.whl (26.1 kB view details)

Uploaded Python 3

File details

Details for the file cellshape-cloud-0.1.2rc0.tar.gz.

File metadata

  • Download URL: cellshape-cloud-0.1.2rc0.tar.gz
  • Upload date:
  • Size: 21.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for cellshape-cloud-0.1.2rc0.tar.gz
Algorithm Hash digest
SHA256 76a481435708e1c7026d1d154f68b1bb3be969343e331cf5efca66b68e227459
MD5 2c8e0751fb4a2fb4d2e9272043db0b0b
BLAKE2b-256 e615d32ed0d6428ceafa70eace39507b5646368dc249ac9e15f8056042e87225

See more details on using hashes here.

File details

Details for the file cellshape_cloud-0.1.2rc0-py3-none-any.whl.

File metadata

File hashes

Hashes for cellshape_cloud-0.1.2rc0-py3-none-any.whl
Algorithm Hash digest
SHA256 6ff9552655fa69d404c539291de1611faa09705b26ba7cfd610b06919f1aa023
MD5 b312a53878f6f29eea21091c3b1aa10b
BLAKE2b-256 9b7b7b881e6bf28bd98f9164efbb0732d967b8251ea63a9f0df61e31a31dacbb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page