Skip to main content

3D cell shape analysis using geometric deep learning on point clouds

Project description

Python Version PyPI Downloads Wheel Development Status Tests Coverage Status Code style: black

Cellshape logo by Matt De Vries


Cellshape-cloud is an easy-to-use tool to analyse the shapes of cells using deep learning and, in particular, graph-neural networks. The tool provides the ability to train popular graph-based autoencoders on point cloud data of 2D and 3D single cell masks as well as providing pre-trained networks for inference.

To install

pip install cellshape-cloud

Usage

Basic Usage

import torch
from cellshape_cloud import CloudAutoEncoder

model = CloudAutoEncoder(num_features=128, 
                         k=20,
                         encoder_type="dgcnn",
                         decoder_type="foldingnet")

points = torch.randn(1, 2048, 3)

recon, features = model(points)

To train an autoencoder on a set of point clouds created using cellshape-helper:

import torch
from torch.utils.data import DataLoader

import cellshape_cloud as cloud
from cellshape_cloud.vendor.chamfer_distance import ChamferLoss


input_dir = "path/to/pointcloud/files/"
batch_size = 16
learning_rate = 0.0001
num_epochs = 1
output_dir = "path/to/save/output/"

model = cloud.CloudAutoEncoder(num_features=128, 
                         k=20,
                         encoder_type="dgcnn",
                         decoder_type="foldingnet")

dataset = cloud.PointCloudDataset(input_dir)

dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

criterion = ChamferLoss()

optimizer = torch.optim.Adam(
    model.parameters(),
    lr=learning_rate * 16 / batch_size,
    betas=(0.9, 0.999),
    weight_decay=1e-6,
)

cloud.train(model, dataloader, num_epochs, criterion, optimizer, output_dir)

Parameters

  • num_features: int.
    The size of the latent space of the autoencoder.
  • k: int.
    The number of neightbours to use in the k-nearest-neighbours graph construction.
  • encoder_type: str.
    The type of encoder: 'foldingnet' or 'dgcnn'
  • decoder_type: str.
    The type of decoder: 'foldingnet' or 'dgcnn'

References

[1] An Tao, 'Unsupervised Point Cloud Reconstruction for Classific Feature Learning', GitHub Repo, 2020

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cellshape-cloud-0.1.3rc0.tar.gz (21.4 kB view details)

Uploaded Source

Built Distribution

cellshape_cloud-0.1.3rc0-py3-none-any.whl (26.1 kB view details)

Uploaded Python 3

File details

Details for the file cellshape-cloud-0.1.3rc0.tar.gz.

File metadata

  • Download URL: cellshape-cloud-0.1.3rc0.tar.gz
  • Upload date:
  • Size: 21.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for cellshape-cloud-0.1.3rc0.tar.gz
Algorithm Hash digest
SHA256 53cd6c461510cf2d3d5ec686d9732f3b28e6e9fc8cb582ac68ac275a9609e4b8
MD5 0b96ed9076ecd9f223746fdab933f036
BLAKE2b-256 ea358d1dbbaa2d0a3c8bcf460f0de0e5120478177c1304273563c3bb4fce1937

See more details on using hashes here.

File details

Details for the file cellshape_cloud-0.1.3rc0-py3-none-any.whl.

File metadata

File hashes

Hashes for cellshape_cloud-0.1.3rc0-py3-none-any.whl
Algorithm Hash digest
SHA256 03605c737da1cd43839cfcf39793f5184dc69193173fef3dac4e6e9e73cebdc7
MD5 44f7dfb924f93afeb79c474e49b4b848
BLAKE2b-256 f7a6a12030f8b1b28e834df32814b3c2297c9dcdcda4f23c16c5a707140eb6af

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page