Skip to main content

3D shape analysis using deep learning

Project description

Project Status: Active – The project has reached a stable, usable state and is being actively developed. Python Version PyPI Downloads Wheel Development Status Tests Coverage Status Code style: black

Cellshape logo by Matt De Vries


Cellshape-cluster is an easy-to-use tool to analyse the cluster cells by their shape using deep learning and, in particular, deep-embedded-clustering. The tool provides the ability to train popular graph-based or convolutional autoencoders on point cloud or voxel data of 3D single cell masks as well as providing pre-trained networks for inference.

To install

pip install cellshape-cluster

Usage

Basic usage:

import torch
from cellshape_cloud import CloudAutoEncoder
from cellshape_cluster import DeepEmbeddedClustering

autoencoder = CloudAutoEncoder(
    num_features=128, 
    k=20, 
    encoder_type="dgcnn"
)

model = DeepEmbeddedClustering(autoencoder=autoencoder, 
                               num_clusters=10,
                               alpha=1.0)

points = torch.randn(1, 2048, 3)

recon, features, clusters = model(points)

To load a trained graph-based autoencoder and perform deep embedded clustering:

import torch
from torch.utils.data import DataLoader

import cellshape_cloud as cloud
import cellshape_cluster as cluster
from cellshape_cloud.vendor.chamfer_distance import ChamferDistance

dataset_dir = "path/to/pointcloud/dataset/"
autoencoder_model = "path/to/autoencoder/model.pt"
num_features = 128
k = 20
encoder_type = "dgcnn"
num_clusters = 10
num_epochs = 1
learning_rate = 0.00001
gamma = 1
divergence_tolerance = 0.01
output_dir = "path/to/output/"


autoencoder = CloudAutoEncoder(
    num_features=128, 
    k=20, 
    encoder_type="dgcnn"
)

checkpoint = torch.load(autoencoder_model)

autoencoder.load_state_dict(checkpoint['model_state_dict']

model = DeepEmbeddedClustering(autoencoder=autoencoder, 
                               num_clusters=10,
                               alpha=1.0)

dataset = cloud.PointCloudDataset(dataset_dir)

dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False) # it is very important that shuffle=False here!
dataloader_inf = DataLoader(dataset, batch_size=1, shuffle=False) # it is very important that batch_size=1 and shuffle=False here!

optimizer = torch.optim.Adam(
    model.parameters(),
    lr=learning_rate * 16 / batch_size,
    betas=(0.9, 0.999),
    weight_decay=1e-6,
)

reconstruction_criterion = ChamferDistance()
cluster_criterion = nn.KLDivLoss(reduction="sum")

train(
    model,
    dataloader,
    dataloader_inf,
    num_epochs,
    optimizer,
    reconstruction_criterion,
    cluster_criterion,
    update_interval,
    gamma,
    divergence_tolerance,
    output_dir
)

Parameters

  • autoencoder: CloudAutoEncoder or VoxelAutoEncoder.
    Instance of autoencoder class from cellshape-cloud or cellshape-voxel
  • num_clusters: int.
    The number of clusters to use in deep embedded clustering algorithm.
  • alpha: float.
    Degrees of freedom for the Student's t-distribution. Xie et al. (ICML, 2016) let alpha=1 for all experiments.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cellshape-cluster-0.0.15rc0.tar.gz (10.6 kB view details)

Uploaded Source

Built Distribution

cellshape_cluster-0.0.15rc0-py3-none-any.whl (11.6 kB view details)

Uploaded Python 3

File details

Details for the file cellshape-cluster-0.0.15rc0.tar.gz.

File metadata

  • Download URL: cellshape-cluster-0.0.15rc0.tar.gz
  • Upload date:
  • Size: 10.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for cellshape-cluster-0.0.15rc0.tar.gz
Algorithm Hash digest
SHA256 ee80e2c974e4eda6f54b646136aee7bd70bb3103bb9d7e82e06c4cac6c4b7ff3
MD5 9f5d15ee53ce7ad8fd17acf66d85eeb7
BLAKE2b-256 885b9dd726542df6ed79caf66b09a258b65bf642c3400078c6112cfccb089003

See more details on using hashes here.

File details

Details for the file cellshape_cluster-0.0.15rc0-py3-none-any.whl.

File metadata

File hashes

Hashes for cellshape_cluster-0.0.15rc0-py3-none-any.whl
Algorithm Hash digest
SHA256 1326611a49c7f8b36ebe6b92777cc80d2e5addfc60554d6567ef4ea270eb02fe
MD5 aff065c8674692c3ff66ef68b1dfd818
BLAKE2b-256 7b685b42d7002274477e20185cb371580054e4423a34d223abe4ade466060f8e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page