Skip to main content

3D shape analysis using deep learning

Project description

Project Status: Active – The project has reached a stable, usable state and is being actively developed. Python Version PyPI Downloads Wheel Development Status Tests Coverage Status Code style: black

Cellshape logo by Matt De Vries


Cellshape-cluster is an easy-to-use tool to analyse the cluster cells by their shape using deep learning and, in particular, deep-embedded-clustering. The tool provides the ability to train popular graph-based or convolutional autoencoders on point cloud or voxel data of 3D single cell masks as well as providing pre-trained networks for inference.

To install

pip install cellshape-cluster

Usage

Basic usage:

import torch
from cellshape_cloud import CloudAutoEncoder
from cellshape_cluster import DeepEmbeddedClustering

autoencoder = CloudAutoEncoder(
    num_features=128, 
    k=20, 
    encoder_type="dgcnn"
)

model = DeepEmbeddedClustering(autoencoder=autoencoder, 
                               num_clusters=10,
                               alpha=1.0)

points = torch.randn(1, 2048, 3)

recon, features, clusters = model(points)

To load a trained graph-based autoencoder and perform deep embedded clustering:

import torch
from torch.utils.data import DataLoader

import cellshape_cloud as cloud
import cellshape_cluster as cluster
from cellshape_cloud.vendor.chamfer_distance import ChamferDistance

dataset_dir = "path/to/pointcloud/dataset/"
autoencoder_model = "path/to/autoencoder/model.pt"
num_features = 128
k = 20
encoder_type = "dgcnn"
num_clusters = 10
num_epochs = 1
learning_rate = 0.00001
gamma = 1
divergence_tolerance = 0.01
output_dir = "path/to/output/"


autoencoder = CloudAutoEncoder(
    num_features=128, 
    k=20, 
    encoder_type="dgcnn"
)

checkpoint = torch.load(autoencoder_model)

autoencoder.load_state_dict(checkpoint['model_state_dict']

model = DeepEmbeddedClustering(autoencoder=autoencoder, 
                               num_clusters=10,
                               alpha=1.0)

dataset = cloud.PointCloudDataset(dataset_dir)

dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False) # it is very important that shuffle=False here!
dataloader_inf = DataLoader(dataset, batch_size=1, shuffle=False) # it is very important that batch_size=1 and shuffle=False here!

optimizer = torch.optim.Adam(
    model.parameters(),
    lr=learning_rate * 16 / batch_size,
    betas=(0.9, 0.999),
    weight_decay=1e-6,
)

reconstruction_criterion = ChamferDistance()
cluster_criterion = nn.KLDivLoss(reduction="sum")

train(
    model,
    dataloader,
    dataloader_inf,
    num_epochs,
    optimizer,
    reconstruction_criterion,
    cluster_criterion,
    update_interval,
    gamma,
    divergence_tolerance,
    output_dir
)

Parameters

  • autoencoder: CloudAutoEncoder or VoxelAutoEncoder.
    Instance of autoencoder class from cellshape-cloud or cellshape-voxel
  • num_clusters: int.
    The number of clusters to use in deep embedded clustering algorithm.
  • alpha: float.
    Degrees of freedom for the Student's t-distribution. Xie et al. (ICML, 2016) let alpha=1 for all experiments.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cellshape-cluster-0.0.16.tar.gz (10.8 kB view details)

Uploaded Source

Built Distribution

cellshape_cluster-0.0.16-py3-none-any.whl (11.7 kB view details)

Uploaded Python 3

File details

Details for the file cellshape-cluster-0.0.16.tar.gz.

File metadata

  • Download URL: cellshape-cluster-0.0.16.tar.gz
  • Upload date:
  • Size: 10.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for cellshape-cluster-0.0.16.tar.gz
Algorithm Hash digest
SHA256 3d867371830a1f8cc633b18374697bfa7c6a919dba1aaaf2e9598abaec3de91b
MD5 280be7c1bb1b5ecbc95163f1ffccfc35
BLAKE2b-256 d3475f8d6846a4c8c8e803d1875ea9ee2cd433c9532fd7e739e87d7475f3127b

See more details on using hashes here.

File details

Details for the file cellshape_cluster-0.0.16-py3-none-any.whl.

File metadata

File hashes

Hashes for cellshape_cluster-0.0.16-py3-none-any.whl
Algorithm Hash digest
SHA256 991004ceb2d5fe16c98b65eab34e54a0e6ac8ab839c494ca6db4d4cc7ca87c21
MD5 c167fafa32f917ddfe1c1b7cf6267778
BLAKE2b-256 4e621e579d1ac79e4c4ceef11267face6515f3ea8074b102981585da34426860

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page